Change search
Refine search result
123456 1 - 50 of 265
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aalberg, Asbjørn Lein
    et al.
    SINTEF, Norway.
    Aamodt, Edvard
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Steen-Hansen, Anne
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Holen, Siri Mariane
    SINTEF, Norway.
    Læring etter branner i Norge – forutsetninger, barrierer og fremmende faktorer2022Report (Other academic)
    Abstract [en]

    Denne rapporten presenterer resultater fra et prosjekt som er utført av Fire Research and Innovation Centre - FRIC fra 2020 til 2022. Første versjon av rapporten ble publisert på engelsk i mars 2022. Denne norske versjonen er oversatt av SINTEF Digital og RISE Fire Research i samarbeid. En spesiell takk til Caroline Kristensen for arbeidet med oversettelsen. Rapporten er også oppdatert på enkelte punkter, uten at fokus og konklusjoner skal være endret.

    Download full text (pdf)
    fulltext
  • 2.
    Aalberg, Asbjørn Lein
    et al.
    SINTEF Digital, Norway.
    Holen, Siri Mariane
    SINTEF Digital, Norway.
    Aamodt, Edvard
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Steen-Hansen, Anne Elise
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety. NTNU Norwegian University of Science and Technology, Norway.
    Preconditions for Learning from Fires in Norway: Structural, Cultural, Technological, Interactional and Relational Aspects2021In: Proceedings of the 31st European Safety and Reliability Conference, 2021, p. 1747-1754Conference paper (Refereed)
    Abstract [en]

    Learning from incidents is widely accepted as a core part of safety management. This is also true for fires – however few fires in Norway are investigated. Fires are interesting incidents conceptually due to their potential of devastating outcomes on material and human lives and because they happen across all sectors and industries, businesses, and homes. In Norway, several different actors play a role in investigating and learning from fires, from the fire rescue services to directorates and Non-Governmental Organisations. The present study seeks to understand the preconditions for learning from fires in Norway, with emphasis on the formal actors that play a role in preventing and mitigating fires. Methodologically, the study is based on qualitative interviews conducted with relevant actors from first responders, authorities, and other sectors. We found that there are structural, cultural, technological, and relational aspects that seem to influence learning from fires in Norway. The results were analyzed using thematic analysis and the Pentagon model framework. The findings are discussed in relation to theories from organisational learning and learning from incidents.

    Download full text (pdf)
    fulltext
  • 3.
    Aamodt, Edvard
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Holmvaag, Ole Anders
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sanfeliu Melia, Cristina
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Erfaringer med mobile vanntåkeanlegg installert i boliger2022Report (Other academic)
    Abstract [en]

    Experiences regarding personal protection water mist systems installed in dwellings. Personal protection water mist systems can produce a water mist that can cool down and limit a fire in a small area in a dwelling. The system is equipped with sensitive detectors which can activate the system in the early stages of the fire and limit the fire spread, and in some cases extinguish the fire. This gives more time for evacuation, which can be especially important for vulnerable people with risk factors, like impaired cognitive and physical functioning. The goal of this study has been to map the experiences in Norway regarding personal protection water mist systems, considering how the municipalities have experienced the work related to the systems and whether the systems have activated and saved lives. This will shed light upon whether mobile water mist systems are appropriate measures for vulnerable people in the society, and the risk factors that determine whether the measure is appropriate or not. This study has used literature studies, questionnaires, and interviews to map the experiences of personal protection water mist systems in Norway. The results showed that personal protection water mist systems installed in Norwegian dwellings have been activated in connection with fire outbreaks, and thus limited or extinguished the fire. This has saved lives on several occasions and reduced the damage potential. There are many people who have risk factors that make it appropriate to install a mobile water mist system in their home, but there are also exceptions. The risk factors that indicate that it is beneficial to install mobile water mist systems in Norwegian dwellings are - Impaired cognitive abilities - Impaired physical abilities - Drug and alcohol problems - Smoking - Living alone The systems are particularly suitable when several of the risk factors are present at the same time. It was also shown that personal protection water mist systems are not suitable for mobile people who spend time in several places in the home and are therefore often outside the system's coverage area. Personal protection water mist systems are not recommended for people who may have the potential to sabotage the system. In questionnaires and interviews, it emerged that there are big differences between how Norwegian municipalities work with assigning, installing, operating, and maintaining personal protection water mist systems. In larger municipalities, there are more people who rely on routines and formal processes for the work, and there is therefore a greater proportion of the larger municipalities who distribute the facilities out to individuals than in the small municipalities where the work is more characterised by informal routines and personal relations. 3 Based on the results from this study, it is our opinion that the following aspects should be covered by future work: • Need for a new and updated cost-benefit analysis for personal protection water mist systems. • Need for a better statistical basis for assessment of the personal protection water mist systems. • Need for a Norwegian test standard for personal protection water mist systems. • Need for clear guidelines for assignment, procurement, installing, operation, and maintenance of personal protection water mist systems.

    Download full text (pdf)
    fulltext
  • 4.
    Aamodt, Edvard
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Jiang, Lei
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Fjellgaard Mikalsen, Ragni
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Snersrud, Dag Olav
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Vermina Plathner, Frida
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sjöström, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Rosnes, Magne
    NTNU, Norway.
    Skilbred, Ellen Synnøve
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Development of large lab-scale fire dynamics experiments relevant for Scandinavian wildfire behaviour2024In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 2885, no 1, article id 012069Article in journal (Refereed)
    Abstract [en]

    The Scandinavian countries have in later years seen several severe wildfires and is expected to exhibit more severe fire danger. While direct flame spread has been an important topic in wildfire research, there is a need for development and to ensure that experimental methods are relevant for Scandinavian wildfire characteristics. To ensure relevant lab conditions for fire-resilient material development work, large lab-scale (2×4 meters) experiments were conducted on various fuels. Its fire behaviour (such as rate of spread, fireline intensity and flame length) was compared with ongoing wildfire field studies from ongoing field studies in boreal and hemiboreal Sweden. The lab fire experiments show good potential to mimic relevant natural wildfire conditions in the laboratory once a standard design fire exposure for fire resilient materials is developed.

    Download full text (pdf)
    fulltext
  • 5.
    Aamodt, Edvard
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Steen-Hansen, Anne
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety. NTNU, Norway.
    Holmvaag, Ole Anders
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    LEARNING FROM FIRE INCIDENTS : Analysis of a devastating fire in a building with municipal housing in Norway2022In: Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), 2022, p. 1156-Conference paper (Refereed)
    Abstract [en]

    This article presents an analysis of a fire in a municipal apartment building used as housing for people with challenges connected to drug addiction. The fire took place in Norway 7th of August 2021. The incident happened during the night and the fire was spreading quickly and intensely via the external wooden balconies. The combination of risk factors both connected to the fire development and the characteristics of the occupants raises the potential for fire fatalities. This analysis seeks to understand why the fire spread with such a speed, and how everyone in the building survived without injuries. The analysis identified both technical and human factors that may help to answer these questions. The findings suggest that there were deficiencies connected to the technical fire safety design that if improved could have reduced the fire damage. Factors promoting the fire spread and fire intensity include the choice of wood material used in the construction of the balconies, no sprinkler system installed on the balconies and a large fire load on the balconies caused by the occupants’ tendency to accumulate possessions on the balconies. Factors contributing to the outcome of no injuries or fatalities included occupants being awake during these late hours, and the strong social network between them. Such a network should be seen as a positive factor regarding robustness against fire and should be encouraged.

  • 6.
    Aamodt, Edvard
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Steen-Hansen, Anne
    Holmvaag, Ole Anders
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Olsen, Vegard E
    Multiconsult, Norway.
    Hermansen, Anna-Karin
    TBRT, Norway.
    Hermansen, Arild
    TBRT, Norway.
    Log, Torgrim
    Gassco, Norway.
    Opstad, Kristen K
    NTNU, Norway.
    Hagen, Bjarne C
    HVL, Norway.
    Analyse av brann i kommunalt boligbygg i Bergen 7. august 20212023Report (Other academic)
    Download full text (pdf)
    fulltext
  • 7.
    Amon, Francine
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Measurable sustainability indicators for the fire safety community2024In: BOOK OF ABSTRACTS Nordic Fire & Safety, RISE Research Institutes of Sweden , 2024, p. 103-Conference paper (Other academic)
  • 8.
    Amon, Francine
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Roadmap for measurable sustainability indicators for the fire safety community2023Report (Refereed)
    Abstract [en]

    This pre-study aims to determine whether developing measurable sustainability indicators (MSI) to assess the sustainability of projects, ideas, and decisions related to fire safety would be useful for fire safety engineers, researchers, municipalities, authorities, policymakers, first responders and other stakeholders. A review of the literature, online sources, project reports and numerous interactions with representatives of several target groups within the fire safety community were conducted to assess their sustainability needs. The results show that the target groups included in this project had some overlapping and some unique sustainability needs. Fire service product suppliers are content at this time to self-declare their sustainability status. Fire and rescue services would like MSI to help them make tactical and strategic decision while responding to fires. They are also interested in MSI to help them convey their sustainability value to the communities they serve. Fire safety engineers would like MSI to support their suggestions for improvements in construction design. Researchers and educators will contribute to the development of MSI that serve the needs of the other target groups. Authorities could use MSI to evaluate progress toward improved sustainability in their jurisdictions and transfer data to other levels of government.

    Download full text (pdf)
    fulltext
  • 9.
    Amon, Francine
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Structure protection provided by ember absorption2024Report (Other academic)
    Abstract [en]

    This proof-of-concept study examines the ability of broadleaved trees to shieldstructures from glowing embers in intense wildfires. Two types of broadleaved trees (arönn, Sorbus aucuparia, and a small group of björkar, Betula pendula) were selected astest targets and their shielding performance was compared with a conifer (a gran, Piceaabies). The simulated embers were a collection of fallen gran cones that were notburning. The cones were launched at the trees using a ball throwing toy for dogs. The rönnsuccessfully prevented 71 % of the cones from passing through its canopy, the björkarprevented 76 % of the cones from passing, and the gran prevented 95 % of the conesfrom passing. The results and observations during the tests indicate that low flyingembers are not prevented from passing through the rönn and björkar because they do nothave low canopies. The success rate depends heavily on whether the cones impact adense area of leaves. The gran has low branches and thick needles and thus can blockmost of the cones, however, it tended to trap the cones underneath, where they couldpotentially smoulder and ignite the tree.

    Download full text (pdf)
    fulltext
  • 10.
    Anderson, Johan
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sjöström, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Chiva, Roman
    Efectis, France.
    Dumont, Fabien
    University of Liege, Belgium.
    Hofmann-Böllinghaus, Anja
    BAM, Germany.
    Toth, Peter
    EMI, Hungary.
    Lalu, Octavian
    BRE, UK.
    Boström, Lars
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Finalisation of the European approach to assess the fire performance of façades2024Report (Refereed)
    Abstract [en]

    This final report summarises the work carried out during the project SI2.825082 financed by the European Commission – DG GROW. Within this project a theoretical Round Robin with the aim to analyse how the initial assessment method is interpreted by different laboratories, and the first and second phase of the initial testing activities to investigate the fire source, the design of the combustion chamber and secondary opening have been carried out. The final step in the project was an experimental Round Robin where four façade systems were tested at three different laboratories using the assessment method document, resulting in 24 tests. Additional tests were added to the project with funding from industrial partners. The tests were used to determine a calibration scheme and suitable performance criteria for classification. Furthermore, a substantial work has been done to ensure that the project is communicated in a good way to all stakeholders and Member States representatives.The theoretical Round Robin was performed with 29 laboratories, all members of European Group of Organisations for Fire Testing, Inspection and Certification (EGOLF). Over 200 questions covering the whole assessment method were asked, and thereafter analysed. The results show clearly which parts of the assessment method needs to be improved and clarified, as well as some practical details regarding the test method that had to be addressed.The first phase of the initial testing program defined the requirements of the fuel source and the combustion chamber. A large quantity of wood, of two different wood species (spruce and pine), had been acquired and thereafter characterised by measurement of dimensions, weight and moisture content. Over 4000 sticks have thus been density graded. After the selection of sticks to the different wood cribs a series of tests have been performed, mainly in accordance with the original test plan. Some modifications to the test plan were made during the course of the experimental study e.g., tests with a crib platform with either a grated or a solid floor. Also, a theoretical study through numerical modelling has been made to study the impact of changes of the combustion chamber geometry on the heat exposure to the test specimen. The simulations showed only small deviations between the regular and the enlarged combustion chamber. The changes of the geometry of the combustion chamber for the large exposure test can be done according to the results from the experimental program, it is beneficial for two reasons: it would make the preparatory work when mounting the test specimen simpler and it would ensure that falling parts will not damage the wood crib during a test.Based on the results a proposal has been made on the characteristics of the fuel source and the geometry and design of the combustion chamber, to be used in the second phase.During the second phase of the initial testing activities large and medium-scale exposure testing was performed on full façade geometries. The testing program including three repeatability tests in addition to gather information on variation in volume flow of the fan in medium-scale exposure as well as effects of the modified combustion chamber and wind in large-scale. From the repeatability tests it was decided to keep a constant height of the wood crib in large-scale due to otherwise large variations in exposure to the façade. Furthermore, the wind effects on the façade temperatures were significant even with a moderate wind of 1-2 m/s. At the end of the second phase three tests in medium and three tests in large-scale were done to investigate the effect of a secondary opening. It was indicated that asymmetrically placed opening would be the most appropriate placement.A short test series on alternative fuel source for the large exposure test was also performed where a propane diffusion burner was used instead of wood cribs. It was shown that if the combustion chamber would be reduced in height similar exposure to the façade could be achieved using the propane burner. There are several benefits with this alternative fuel source such as decreased height, less cleaning, higher safety and therefore less costs associated to10testing. For the medium exposure test the alternative gas burner described in DIN 4102-20 might be an appropriate alternative fuel source for the wood crib. However, no further investigations were made in this project in this regard.An update of the assessment method was made to take into account the latest information such as the repeatability tests and the second phase of the testing program. These changes such as the placement of the wood crib and the secondary opening was used in the experimental Round Robin.In tandem to this work, two surveys on falling parts were performed to find out the needs of Member States (MS) and setting criteria to be used during the Round Robin. Furthermore, an inquiry on the capacities for indoor and outdoor testing of different testing laboratories connected with EGOLF was made and is reported here.The work on the experimental Round Robin was completed in March 2024 and presentations of the tests and specimens are discussed in this report, more detailed information is available in the comparative documents. These include comparisons between tests on the same type of façade system at the different laboratories. This enables inter-laboratory comparisons for each monitored quantity and position. The inert tests are used to determine suitable calibration schemes for the medium and the large-scale exposure method, whereas the remaining tests are used to determine the performance criteria. Here it should be noted that average temperature is a more stable assessment criterion than a peak temperature or above a certain temperature during a certain time interval. The consortium would like to stress that arranging this type of Round Robin exercise is a severe logistic challenge which requires extensive planning.The project has been communicated through different channels. The project web page is the main communication channel where all reports and other documentation is published (https://www.ri.se/en/what-we-do/projects/european-approach-to-assess-the-fire-performance-of-façades). In addition to the webpage a YouTube channel is available showing a few of the tests and recent seminars, see webpage for a link.A Comments Handling Document has been kept and it includes almost 1000 comments that have been received during the project. These comments were handled continuously and communicated through the above-mentioned web page.

    Download full text (pdf)
    fulltext
  • 11.
    Andersson, Stina
    et al.
    RISE Research Institutes of Sweden.
    Dahlbom, Sixten
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Pramanik, Roshni
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    LASH FIRE : Consolidation of performance assessment and solutions' impact on safety: Deliverable D04.102023Report (Other academic)
    Abstract [en]

    There have been a number of fires on board ro-ro ships with severe consequences the last decades, several which have started in a ro-ro space. To prevent and mitigate future fire accidents, cost-effective solutions to improve ships’ abilities to independently handle a fire starting in a ro-ro space are needed. Within the LASH FIRE project, innovative solutions aimed at strengthening the independent fire protection of ro-ro ships have been developed and demonstrated. These solutions are developed to strengthen all parts of the fire protection chain, from ignition prevention all the way to evacuation. This deliverable, D04.10, presents an overview of the testing and demonstration of the solutions. Through this deliverable, external parties, such as industry actors, will have a compilation of the evaluation and its outcome for the different solutions that have been developed and demonstrated within LASH FIRE.

    Download full text (pdf)
    fulltext
  • 12.
    Arvidson, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Egeltoft, Emil
    Brandskyddslaget AB, Sweden.
    Godby, Tomas
    Brandskyddsbesiktning T Godby AB, Sweden.
    Driftserfarenheter från sprinkler-installationer i kyrkor och andra kulturhistoriskt värdefulla byggnader Brandforsk projekt 323-0102023Report (Other academic)
    Abstract [en]

    Operating experiences from sprinkler system installations in Swedish churches and other heritage buildings During the past 20 years, the fire protection of many historically valuable buildings in Sweden, especially ancient wooden churches, have been improved with the installation of fire detection and fire sprinkler systems. The objective of the project was to document the operating experiences from some of these buildings. Most of the installations have been made in small- or intermediate-sized wooden churches, but installations in larger buildings were identified. The operating experiences were documented by interviews with the end users, fire protection inspectors and system installers, and by study visits. Problems associated with the use of antifreeze were identified. Systems have experienced leakage, high and varying system pressures during warm days and unintentional activations due to breakage of nozzles or nozzle glass bulbs. For systems designed as dry-pipe systems, unintentional activations have occurred during wintertime due to freezing. Testing of dry-pipe systems during the study visits also revealed unacceptably long water delivery times and residual water in piping. Many of the smaller rural churches are using a high-pressure gas (nitrogen) driven pump because the public grid is unreliable. Three suffocation incidents were documented when nitrogen was unintentionally released into the technical space. Two of the incidents can be described as profoundly serious. The church building managers have a key role in the daily supervision of these installations. But it requires effort, technical competence and not least a substantial deal of self-interest. For some churches, high staff turnover has contributed to a lack of competence and supervision and maintenance has been neglected. High frequency of fault alarms (operating alarms) was also perceived as a burden and is also costly. Overall, the occurrence of technical problems and excessive costs have contributed to the shutdown or even dismantling of several sprinkler systems.

    Download full text (pdf)
    fulltext
  • 13.
    Arvidson, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Gehandler, Jonatan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Bleye, Jaime
    Centro de Seguridad Marítima Integral Jovellanos, Spain.
    Fire suppression and manual firefighting of batteryelectric vehicle fires on ro-ro ships2023In: Proceedings of Seventh International Conference on Fires in Vehicles, 2023, p. 107-Conference paper (Refereed)
    Abstract [en]

    The increased use of electric vehicles has raised a concern about firefighting measures including water spray fire suppression systems (often denoted “drencher systems”) and tactics and equipment used for manual firefighting on ro-ro cargo and ro-ro passenger ships. A test series involving testing of two pairs of geometrically similar internal combustion engine vehicles (ICEV’s) and battery electric vehicles (BEV’s) under as equal test conditions as possible were conducted to investigate the performance efficiency of the drencher system. In addition, manual firefighting equipment and tactics was evaluated on three BEV fire tests. It is concluded that a fire in the two types of vehicles is different but share similarities. However, a fire in a BEV does not seem to be more challenging than a fire in an ICEV for the drencher system design given in current international recommendations. Similarly, there are common (e.g., handheld fire extinguishers and hoses) and new (e.g., fire blanket and water-cooling device) manual firefighting equipment that effectively can be used to control or limit a BEV fire.

  • 14.
    Arvidson, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Mindykowski, Pierrick
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Fire testing of alternative fixed fire-extinguishing systems for ro-ro spaces onboard ships2023In: Ships and Offshore Structures, ISSN 1744-5302, E-ISSN 1754-212X, Vol. 18, no 3, p. 423-428Article in journal (Refereed)
    Abstract [en]

    The International Convention for the Safety of Life at Sea (SOLAS) recognises five different fire-extinguishing system solutions for ro-ro spaces on ships; manually activated water spray systems (Resolution A.123(V)), automatic sprinkler or deluge water spray systems and automatic nozzle or deluge water mist systems (MSC.1/Circ.1430), high-expansion foam systems and gas fire-extinguishing systems (FSS Code). A review of potential commercially available alternative systems, their expected performance efficiency and water consumption was made. Based on this review, two alternative fire-extinguishing systems were identified: Compressed Air Foam Systems (CAFS) and foam-water sprinkler/spray systems. Fire suppression performance testing of water spray systems according to the Resolution A.123(V) and MSC.1/Circ.1430, a CAFS and a foam-water spray system were conducted. The water spray system per MSC.1/Circ.1430 had superior performance while the system per Resolution A.123(V) and the foam-water spray system limited the fire size to some degrees. The CAFS provided limited fire suppression performance.

  • 15.
    Arvidson, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Westlund, Örjan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    The Development of Automatic Sprinkler System Concepts for Maritime Vehicle Carriers2024In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099Article in journal (Refereed)
    Abstract [en]

    Closed ro-ro spaces on maritime vehicle carriers are usually protected by a total-flooding carbon dioxide system. Such systems have many benefits, for example that there are no residues that can adversely affect the protected objects (in this case thousands of vehicles) and the agent is electrically non-conductive. However, there could be a considerable time delay from the start of a fire until the carbon dioxide system is discharged. Experience has shown that this delay time can cause significant fire damage and jeopardize the performance of the system. Within the EU funded LASH FIRE project, design and installation guidelines for supplementary automatic water-based fire sprinkler systems were developed. An important design feature is that the system automatically activates at an early stage of a fire. This would allow more time to fight the fire manually or to safely evacuate the space and discharge the CO2 system when the fire is controlled to one or a few vehicles instead of at a time when it has escalated in size. The work was partly based on a comprehensive literature review that identified relevant standards and information applicable to the design of automatic fire sprinkler and deluge water spray systems. Large-scale fire tests verified that the suggested system designs were able to provide control of realistic vehicle fires, including fires in passenger cars and a freight truck.

    Download full text (pdf)
    fulltext
  • 16.
    Arvidson, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Westlund, Örjan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Water Spray Fire Suppression Tests Comparing Gasoline-Fuelled and Battery Electric Vehicles2023In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Fire Technology, Vol. 59, no 6, p. 3391-3414Article in journal (Refereed)
    Abstract [en]

    Closed ro-ro spaces on maritime vehicle carriers are usually protected by a total-flooding carbon dioxide system. Such systems have many benefits, for example that there are no residues that can adversely affect the protected objects (in this case thousands of vehicles) and the agent is electrically non-conductive. However, there could be a considerable time delay from the start of a fire until the carbon dioxide system is discharged. Experience has shown that this delay time can cause significant fire damage and jeopardize the performance of the system. Within the EU funded LASH FIRE project, design and installation guidelines for supplementary automatic water-based fire sprinkler systems were developed. An important design feature is that the system automatically activates at an early stage of a fire. This would allow more time to fight the fire manually or to safely evacuate the space and discharge the CO2 system when the fire is controlled to one or a few vehicles instead of at a time when it has escalated in size. The work was partly based on a comprehensive literature review that identified relevant standards and information applicable to the design of automatic fire sprinkler and deluge water spray systems. Large-scale fire tests verified that the suggested system designs were able to provide control of realistic vehicle fires, including fires in passenger cars and a freight truck.

    Download full text (pdf)
    fulltext
  • 17.
    Arvidson, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Westlund, Örjan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Water Spray Fire Suppression Tests Comparing Gasoline-Fuelled and Battery Electric Vehicles2023In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 59, p. 3391-Article in journal (Refereed)
    Abstract [en]

    The increased use of electric vehicles has raised a concern about the performance efficiency of water spray fire suppression systems (often denoted “drencher systems”) typically installed on ro–ro cargo and ro–ro passenger ships. A test series was conducted involving testing of two pairs of geometrically similar gasoline-fuelled and battery electric vehicles in test conditions as equivalent as possible. During testing, key parameters such as the heat release rate, the gas temperature above the vehicle and the surface temperature of target steel sheet screens at the sides of the vehicle were measured. Fire ignition was arranged in such a way that the gasoline fuel or the battery pack was involved at the initial stage of the fire. It is concluded that fires in the two types of vehicles are different but have similarities. However, a fire in a battery electric vehicle does not seem to be more challenging than a fire in a gasoline-fuelled vehicle for a drencher system designed in accordance with current international recommendations

  • 18.
    Askov Stærkjær, Kenneth
    et al.
    Byg og Brand, Denmark.
    Dederichs, Anne
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety. DTU Technical University of Denmark, Denmark.
    Sustainable materials in buildings : the influence of wind barriers on fire safety2024In: BOOK OF ABSTRACTS Nordic Fire & Safety, RISE Research Institutes of Sweden , 2024, p. 45-Conference paper (Other academic)
  • 19.
    Bachinger, Angelika
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Sandinge, Anna
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Lindqvist, Karin
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Strid, Anna
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Gong, Guan
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Systematic evaluation of bromine-free flame-retardant systems in acrylonitrile-butadiene-styrene2022In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 139, no 13, article id 51861Article in journal (Refereed)
    Abstract [en]

    A systematic investigation of phosphorus-based flame-retardant (PFR) systems in acrylonitrile-butadiene-styrene (ABS) is presented. The effect of various PFRs, combinations thereof and influence of different synergists is studied in terms of fire and mechanical performance, as well as toxicity of resulting ABS. Sustainable flame-retardant systems with a promising effect on the fire-retardant properties of ABS are identified: A combination of aluminum diethylphosphinate and ammonium polyphosphate is shown to exhibit superior flame-retardant properties in ABS compared to other studied PFRs and PFR combinations. Among a variety of studied potential synergists for this system, a grade of expandable graphite with a high-initiation temperature and a molybdenum-based smoke suppressant show the most promising effect, leading to a significant reduction of the peak heat release rate as well as the smoke production rate. Compared to current state-of-the-art brominated flame-retardant for ABS, the identified flame-retardant systems reduce the maximum smoke production rate by 70% and the peak heat release rate by 40%. However, a significant reduction of the impact performance of the resulting ABS is identified, which requires further investigation.

  • 20.
    Bahrami, Soheila
    et al.
    Lund University, Sweden.
    Zeinali, Davood
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    The sustainability challenge of product information quality in the design and construction of facades: lessons from the Grenfell Tower fire2023In: Smart and Sustainable Built Environment, ISSN 2046-6099, E-ISSN 2046-6102, Vol. 12, no 3, p. 488-Article in journal (Refereed)
    Abstract [en]

    Purpose: This paper explores the quality and flow of facade product information and the capabilities for avoiding the risk of facade fires early in the design process. Design/methodology/approach: A qualitative case study using the process tracing method is conducted in two stages. First, a thematic analysis of reports and literature identified two categories for the problems that caused fast fire spread across the Grenfell Tower facade. This enabled classifying the identified problems into four stages of a facade life cycle: product design and manufacturing, procurement, facade design and construction. Second, the capabilities for avoiding the problems were explored by conducting in-depth interviews with 18 experts in nine countries, analyzing design processes and designers' expertise and examining the usability of three digital interfaces in providing required information for designing fire-safe facades. Findings: The results show fundamental flaws in the quality of facade product information and usability of digital interfaces concerning fire safety. These flaws, fragmented design processes and overreliance on other specialists increase the risk of design defects that cause fast fire spread across facades. Practical implications: The findings have implications for standardization of building product information, digitalization in industrialized construction and facade design management. Originality/value: This research adds to the body of knowledge on sustainability in the built environment. It is the first study to highlight the fundamental problem of facade product information, which requires urgent attention in the rapid transition toward digital and industrialized construction. © 2022, Soheila Bahrami and Davood Zeinali.

  • 21.
    Bergius, Mikael
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Comparison of two test methodologies for fire testing of façade system2023Report (Other academic)
    Download full text (pdf)
    Full text
  • 22.
    Bjelland, Henrik
    et al.
    University of Stavanger, Norway.
    Gehandler, Jonatan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Meacham, Brian
    Meacham Associates, United States.
    Carvel, Ricky
    University of Edinburgh, United Kingdom.
    Torero, Jose L.
    University College London, United Kingdom.
    Ingason, Haukur
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Njå, Ove
    University of Stavanger, Norway.
    Tunnel fire safety management and systems thinking: Adapting engineering practice through regulations and education2024In: Fire safety journal, ISSN 0379-7112, E-ISSN 1873-7226, Vol. 146, article id 104140Article in journal (Refereed)
    Abstract [en]

    Society is changing ever faster, and tunnels are complex systems where performance is affected by many different stakeholders. These conditions suggest that safety management needs to be proactive and based on a systems perspective that acknowledges socio-technical theories. Although systems thinking principles are foundational in overarching European regulations and goals, system principles generally don’t affect tunnel fire safety design principles or engineering practice. In the countries investigated in this study, tunnel fire safety management (TFSM) builds on experience-based and risk management-based principles that are optimized independently system by system. This is usually done with limited consideration of how these systems are interconnected and affect the overall tunnel system. The purpose of this paper is to investigate how systems thinking could support existing engineering practice. The work presented in this article is the outcome of a collaboration between fire safety researchers and practitioners from five countries and three continents. Through three workshops, current TFSM principles have been compiled and discussed. It is suggested that tunnel safety regulations be redesigned to strengthen the ability of engineers to work in design teams using systems thinking principles.

    Download full text (pdf)
    fulltext
  • 23.
    Bjurling, Oscar
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Industrial Systems.
    Müller, Hanna
    RISE Research Institutes of Sweden, Digital Systems, Industrial Systems.
    Burgén, Julia
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Bouvet, C. J.
    ONERA, France.
    Berberian, B.
    ONERA, France.
    Enabling Human-Autonomy Teaming in Aviation: A Framework to Address Human Factors in Digital Assistants Design2024In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 2716, article id 012076Article in journal (Refereed)
    Abstract [en]

    The introduction of artificial intelligence (AI) tools in aviation necessitates more research into human-autonomy teaming in these domain settings. This paper describes the development of a design framework for supporting Human Factors novices in considering human factors, improving human-autonomy collaboration, and maintaining safety when developing AI tools for aviation settings. Combining elements of Hierarchical Task Analysis, Coactive Design, and Types and Levels of Autonomy, the design framework provides guidance in three phases: modelling and understanding the existing system and associated tasks; producing a new function allocation for optimal Human-Autonomy Teaming (HAT); and assessing HAT-related risks of the proposed design. In this framework, designers generate a comprehensive set of design considerations to support subsequent development processes. Framework limitations and future research avenues are discussed. 

    Download full text (pdf)
    fulltext
  • 24.
    Blom, Joel
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Stöd för revidering av brandskyddshandbok med riktlinjer för brandskydd för fordon och maskiner i undermarksanläggningar2023Report (Other academic)
    Abstract [en]

    Supportive report with suggestions at revision of GRAMKO mining guidelines regarding fire suppression systems in mining vehicles

    A need has been identified to revise swedish minings guidelines BRANDSKYDD I GRUV- OCH BERGANLÄGGNINGAR Bilaga 1-FORDON BRANDSKYDDSKONTROLL dated 2016 as SBF 127 has been revised in 2021. SBF 127:17 has been revised on crucial points regarding the installation of automatic extinguishing systems in engine compartments. The transition rules for extinguishing systems according to previous editions of SBF 127 expire on 31-12-2023. The work has also included a review of how other needed revisions in the same appendix can be handled. A proposal for how extinguishing systems according to SBF 127:17 can be applied for fire protection of vehicles with Li-ion batteries that are used in underground facilities has been elaborated. Recommendations of additional measures that may need to be implemented to achieve a reasonable fire protection of these vehicles and machines is included. This project has been financed by TUSC.

    Download full text (pdf)
    fulltext
  • 25.
    Boddaert, S.
    et al.
    CSTB, France .
    Bonomo, P
    SUPSI, Switzerland .
    Eder, G
    OFI, Austria .
    Fjellgaard Mikalsen, Ragni
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Ishii, H
    LIXIL Corporation, Japan .
    Kim, J-T
    Kongju National University, Republic of Korea .
    Ko, Y
    National Research Council Canada, Canada .
    Kovacs, Peter
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Li, Tian
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Olano, X
    Tecnalia, Spain .
    Parolini, F
    SUPSI, Switzerland .
    Qi, D
    Université de Sherbrooke, Canada .
    Shabunko, V
    SERIS, Singapore .
    Slooff, L
    TNO, Netherlands .
    Stølen, Reidar
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Valencia, D
    Tecnalia, Spain .
    Villa, S
    TNO, Netherlands .
    Wilson, H R
    Fraunhofer, Germany .
    Yang, R
    RMIT, Australia.
    Zang, Y
    RMIT, Australia.
    Fire safety of BIPV: International mapping of accredited and R&D facilities in the context of codes and standards 20232023Report (Other academic)
    Abstract [en]

    The objective of Task 15 of the IEA Photovoltaic Power Systems Programme is to create an enabling framework to accelerate the penetration of BIPV products in the global market of renewables, resulting in an equal playing field for BIPV products, BAPV products and regular building envelope components, respecting mandatory issues, aesthetic issues, reliability issues, and financial issues.

    Subtask E of Task 15 is focused on pre-normative international research on BIPV characterisation methods and activity E.3 is dedicated to fire safety of BIPV modules and installations.

    Download full text (pdf)
    fulltext
  • 26.
    Bogatyy, Vladyslav V
    et al.
    DTU Technical University of Denmark, Denmark.
    Beck Meincke, Michael
    DTU Technical University of Denmark, Denmark.
    Dederichs, Anne
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Firefighting Engineering - Fire brigade intervention model in Danish fire safety design2024In: BOOK OF ABSTRACTS Nordic Fire & Safety, 2024, p. 23-Conference paper (Other academic)
  • 27.
    Bram, Staffan
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Burgén, Julia
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Guidelines for crew-centered fire safety design: LASH FIRE guidelines2023Report (Other academic)
    Abstract [en]

    Managing an onboard fire is a time sensitive process where smooth action and collaboration amongst the crew is key to good outcomes. These actions and interactions, however, are heavily influenced by ship design. Information that is difficult to collect, systems that create confusion and disturbances in the bridge environment are all factors that may lead to delays, and ultimately, to an aggravated fire scenario.

    Fire safety design is often treated as a purely technical issue, with a focus on technical performance and rule compliance. But when a fire occurs, gaining control requires correct and timely actions from the crew. Providing the crew with the right tools for this job – purposefully designing onboard environments, systems and tools according to their needs – is an underused and powerful approach to fire safety. This guide sets out from an activity-centered perspective, that is, a strong emphasis on what the crew needs to do in the event of fire, and how those actions can be supported. The purpose of this guide is to show how such an approach can be applied in the early phases of a ship newbuild project.

    Download full text (pdf)
    ”Design guidance” (full text)
    Download (zip)
    ”Requirements worksheet”
  • 28.
    Bram, Staffan
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Burgén, Julia
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Burden, Håkan
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Evakuering av kustnära fartyg i en automatiserad framtid2023Other (Other (popular science, discussion, etc.))
    Abstract [sv]

    Den kustnära färjetrafiken är en tacksam miljö för att testa nya automationslösningar. Här finns många fartyg som trafikerar relativt lugna vatten och där bemanningen redan idag är begränsad till en eller två personer. Men förändringar i teknik och bemanning kommer också kräva nya perspektiv i säkerhetsarbetet. I projektet SPECTRUM har besättningens roll vid en nödevakuering undersökts och jämförts med olika automationsscenarier för kustnära färjetrafik. Resultatet pekar ut områden där fortsatt forskning och utveckling är nödvändig för att säkerställa att en evakuering av ett fartyg kan genomföras med så goda förutsättningar som möjligt - om bemanningen reduceras, yrkesroller förändras eller om besättningen ersätts med automationslösningar.

    Download full text (pdf)
    fulltext
  • 29.
    Bram, Staffan
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sjögren, Peter
    RISE Research Institutes of Sweden.
    Burgén, Julia
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Pramanik, Roshni
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    STM BALTSAFE : Validation of WP4: Document No: BS_ WP6.2.22021Report (Other academic)
    Abstract [en]

    Vessel Traffic Service Operators (VTSOs) employ their experience and problem-solving skills in order to uphold safety in the controlled traffic area. Human Factors studies focus on the conditions of that work – whether technologies, organizations and interfaces to other stakeholders are adapted to VTS operator activities and needs. For the VTS, the purpose of Sea Traffic Management (STM) services is to allow digital communication and information sharing between the VTS Centre and ships in the controlled area, with an emphasis on simple creation and sharing of ship routes. The aim of this evaluation has been to uncover Human Factors hazards associated with the introduction of STM services developed in STM BALT SAFE WP4, directed towards route creation, sharing and associated safety functions. Analyses have concentrated on three levels of interaction within the sea traffic system: 1. The VTS operator and her immediate working environment (usability and ergonomics of VTS systems and tools affected by STM implementation). 2. The organization of VTS collaboration with other actors in the port and its surroundings. 3. Interaction in the greater context of ship traffic (including both STM and non-STM ships). The evaluation was performed using qualitative methods in a process consisting of three main stages – A first analysis using heuristics from the domain of Human Reliability Analysis, an interview study with sea traffic system stakeholders, and a VTS simulator study. Results indicate that maritime administrations should employ a consistent design process that caters for local VTS Centre characteristics and the needs of their operators. As work with STM continues, technical development should be augmented with an iterative development of VTS system user experience and usability. Aspects of STM that are already known to require a human factors validation are, but not limited to: • That the new information provided to operators through the STM services is presented in a way that does not introduce confusion or obscure information (e.g. cluttering of routes, poor visibility of ships/routes/geographical features). • That alarms and/or alerts are relevant, useful and communicated effectively. Irrelevant alarms or alerts can disturb the work of the VTSO, and even if only relevant alerts are provided, the sum of all alerts can still produce a poor working environment (e.g. with regard to noise). • That STM services are coupled with sufficient support for notetaking and/or marking. With a larger bulk of information available to the operator (e.g. around possible future hazards) comes a larger need to support the operator attention and memory. • That the implementation of STM functions accounts for information management over several work shifts. • That predictive tools (e.g. prediction of future ship movements and associated conflicts) factor in prediction uncertainty, so that the operator is given a truthful representation of possible traffic development. • That there are means of communication suitable for use with the STM functions. Even though chat functionality was excluded from the STM BALT SAFE scope, some informants hold that other means of communication than VHF might be necessary if the ship is to send its route before reaching the VTS area. • That dynamics in VTS-ship interaction may be affected as new forms of communication develop. For example, even if the purpose of the VTS Centre is only to “inform” ships about traffic conditions, creating and sharing routes via STM services might be regarded as something more than a friendly suggestion. This invokes a discussion around VTS authority and responsibility in the event of an incident that needs to be continued. Evaluation data suggests that the use of STM functionality is not appropriate for all operative conditions, and that implementation must be calibrated against the practical needs of local VTS operators. Here, a balance must be struck between allowing for local adaption of STM services and offering a uniform STM interface towards vessels moving between different control areas. A final aspect of adaptation is the relation between VTS technical functionality and how these functionalities are put to practical use. Seeing that STM services could expand the operator time horizon and allow them to work more proactively, technical development should be combined with a review of local VTS procedures, making sure that the VTS operational approach (e.g. procedures for ship interaction or the functional level of VTS implementation) matches all the capabilities afforded by STM.

  • 30.
    Brandon, Daniel
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Engineering methods for structural fire design of wood buildings – structural integrity during a full natural fire2018Report (Other academic)
    Abstract [en]

    Structural collapse as a result of fire is rare, but it can, especially in case of high rise buildings, lead to high property loss. For buildings with a risk of high financial damages, such as tall buildings, there may be a need to show that the building can withstand a complete natural fire without structural collapse, by e.g. using simulation and calculation methods. Such methods and guidance on how to use these are available for structures made of concrete and steel. Hereby, the structure is assessed against design fire exposures which are expected in a potential fire of the specific building or building design. However, such methods and guidance on how to use them is lacking for tall timber buildings. The risk of collapse is dependent on the fire exposure and properties of the structure. When timber is the structural material, the structure can have an influence on the fire exposure as timber can contribute to the fire as fuel. Therefore, successful structural design methods should include the contribution of timber to the fuel of the fire.

    Download full text (pdf)
    fulltext
  • 31.
    Brandon, Daniel
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 4 – Engineering Methods2018Report (Other academic)
    Abstract [en]

    Recent architectural trends include the design and construction of tall buildings with visible structural members comprised of mass timber. Cross-laminated timber (CLT) is such a mass timber material and is increasingly used for tall buildings because of a combination of advantages regarding its structural performance, low environmental impact and more. As timber is a combustible material, CLT can become involved in the fire if it is not protected against the fire. Previous tests have shown that the contribution of the timber possibly leads to sustained fires that do not burn out, because of failure of the base layer of gypsum boards, debonding of CLT lamellas (delamination) or due to an excess of unprotected timber. If it cannot be assumed that the fire brigade or sprinkler activation will suppress a fire, it can be needed to design for burn-out without successful fire suppression. Engineering methods to limit the impact of gypsum failure, delamination and an excess of exposed timber are needed. Additionally, a method for structural design for CLT structures considering natural fires is needed. This report proposes and evaluates pragmatic design methods using parametric design fires. The methods using parametric design fires can only be valid if delamination and failure of the base layer of gypsum boards are avoided. Therefore, an additional method to predict gypsum fall-off is presented. A method to avoid delamination is presented in other work. The parametric fire design methods proposed, resulted in conservative predictions of the damage of exposed CLT and conservative predictions of the occurrence of gypsum board fall-off. Parametric design fires can be used for structural predictions of the timber building exposed to fire using recently developed methods.

    Download full text (pdf)
    fulltext
  • 32.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Dagenais, Christian
    FPInnovations, Canada.
    Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 5 – Experimental Study of Delamination of Cross Laminated Timber (CLT) in Fire2017Report (Other academic)
    Abstract [en]

    Recent architectural trends include the design and construction of tall buildings with visible structural members comprised of mass timber. Cross-laminated timber (CLT) is such a material and is increasingly used for tall buildings because of a combination of advantages regarding its structural performance, low environmental impact and more. As timber is a combustible material, CLT can become involved in the fire at locations where it is not protected against the fire. In that case, the CLT contributes to the fuel load of the fire and has an influence on the fire dynamics. Recent compartment fire tests have shown that bond line failures within cross-laminated timber caused by fire can result in sustained fires that do not extinguish naturally. Due to weakening of the bond line, glued lamellas of the exposed layer of the CLT can delaminate, which can result in a sudden exposure of cold timber to the high temperatures of a fire. This delamination results, therefore, in an increased combustion of exposed timber, and was previously shown to be the cause of continuous fully developed fires and fires that re-intensify after a period of decay. The study presented in this report aimed to (1) determine whether delamination in compartment fires can be avoided by using robust adhesives and (2) to assess the capability of a small scale test method to identify robust adhesives that do not lead to delamination of CLT in fires. The study involved a replication of fire conditions recorded in a recent compartment fire test performed earlier for this research project on Fire Safety Challenges of Tall Wood Buildings. These fire conditions were replicated in an intermediate scale furnace test with an exposed CLT specimen. The fire temperatures, oxygen concentration, incident radiant heat flux, CLT temperatures, charring rate and times of delamination resulting from the intermediate scale tests were similar to those of the compartment test, if the same CLT product was used in both specimens. It was shown that some CLT specimens made with other adhesives do not delaminate in the same conditions. The capability of a small scale Bunsen burner test to identify non-delaminating and delaminating adhesives was assessed. A comparative study showed that there is a good correspondence between results of the intermediate scale furnace test and the small scale Bunsen burner test.

    Download full text (pdf)
    fulltext
  • 33.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Hopkin, Danny
    OFR Consultants, UK.
    Emberley, Richard
    California Polytechnic State University, USA.
    Wade, Colleen
    Fire Research Group, New Zealand.
    Timber Structures2021In: International Handbook of Structural Fire Engineering / [ed] LaMalva, Kevin; Hopkin, Danny, Cham: Springer International Publishing , 2021, p. 235-322Chapter in book (Other academic)
    Abstract [en]

    This chapter examines structural fire engineering considerations that are specific to timber, which is a relatively emerging construction material for large engineered buildings. First, thermal and mechanical properties of timber at elevated temperatures are discussed. Second, failure modes specific to timber structures (e.g., adhesive debonding) are examined. Lastly, pertinent analysis techniques for structural fire engineering applications involving timber structures are presented. The renaissance of timber as a construction material, allied to its application in less common building forms, has led researchers to map many challenges that should be considered and addressed when seeking to demonstrate that an adequate level of structural fire safety has been achieved when adopting timber. In parallel, new research studies have emerged which fundamentally seek to understand the timber pyrolysis process and its translation to the enclosure fire context. These challenges and the recent prevalence of timber-associated fire research shape the content of this chapter.

  • 34.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Just, Alar
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Tiso, M
    Tallinn University of Technology, Estonia.
    Parametric fire design – zero-strengthlayers and charring rates2017Conference paper (Other academic)
    Abstract [en]

    In the field of fire safety engineering performance based design methods are increasingly used to demonstrate that building designs are safe. However, performance based design is not commonly used for the design of timber structures, as there are not many relevant assessment methods available (Östman et al. 2010). For assessment whether the design of a building meets certain criteria, a design fire scenario is needed. Design fires often describe the temperature throughout a fire and are often based on dimensions, ventilation conditions and the fuel load of the compartment. Parametric fires are such design fires, used for structural calculations corresponding to post-flashover fires in compartments, based on the compartment’s dimensions, ventilation openings, lining materials, and the fuel load. Eurocode 1 (EN1991-1- 2:2004) includes parametric fires. Annex A of Eurocode 5 (EN1995-1-2:2004) offers calculation methods to determine charring rates of timber under parametric fire exposure, which depend mostly on the compartment’s ventilation opening sizes. However, Annex A is not accepted for use in all European countries, as the provided charring rates are questioned. Additionally, there are some parameters missing for calculations of structures exposed to parametric fires, namely: (1) notional charring rates, which take into account an increased char depth at the corners of small crosssections and (2) zero-strength-layers, which take into account a strength reduction of uncharred but damaged wood in the structural member. This paper presents an experimental study performed to determine one-dimensional, notional charring rates and zero-strength-layers corresponding to a range of parametric fire curves.

    Download full text (pdf)
    fulltext
  • 35.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Klippel, Michael
    Frangi, Andrea
    Glueline Integrity in Fire2021Report (Other academic)
    Abstract [en]

    Mass timber is an increasingly popular material for large and tall buildings. Such buildings typically have higher consequence classes than buildings of traditional timber construction and have higher fire resistance requirements. Architectural demands pushing towards having large surface areas of visible and exposed wood lead to additional fire safety challenges. Previous research has shown that some mass timber products can exhibit glue line integrity failure when exposed to fire, while other mass timber products are not prone to this phenomenon. In practice, it is important to know whether glue line integrity failure occurs, to be able to suitably perform fire resistance calculations (for example using the upcoming version of Eurocode 5) and to be able to predict the fire exposure and duration of fires in real buildings (needed for a performance-based approach). The research presented in this report studies the suitability of a furnace test for determining whether products exhibit glue line integrity failure or not. The study includes the determination of a conservative test duration, by comparisons with conditions of a statistically severe compartment fire. Furthermore, a round robin study with twelve fire tests in furnaces of different labs at different scales, fired with different fuel types has been performed. For all tests, the specimens were made of a mass timber material that does not exhibit glue line integrity failure. The average mass loss rate per unit of exposed area and the average charring rate were determined and assessment criteria were evaluated. Comparisons of the round robin study results have been made, against those of a specific CLT product that has been shown to maintain glue line integrity in numerous furnace and compartment fire tests and a recommendation of a pass/fail criterion is given for a future classification standard.

    Download full text (pdf)
    fulltext
  • 36.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Landel, Pierre
    RISE Research Institutes of Sweden, Built Environment, Building and Real Estate.
    Ziethén, Rune
    RISE Research Institutes of Sweden, Built Environment, Building and Real Estate.
    Allbrektsson, Joakim
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Just, Alar
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    High-Fire-Resistance Glulam Connections for Tall Timber Buildings2019Report (Other academic)
    Abstract [en]

    Tall timber buildings generally require fire resistance ratings of 90 minutes, 120 minutes or more. The vast majority of fire tested structural timber connections, however, did not reach a fire resistance that was relevant for these buildings. Commonly timber connections between glued laminated timber members comprise of exposed steel fasteners, such as bolts, screws, nails and dowels. However, it has previously been concluded that connections with exposed steel fasteners, generally do not achieve fire resistance ratings of 30 minutes and are, therefore, inadequate to be implemented in tall timber buildings without fire encapsulation. The research project presented in this report consists of four connection fire tests that are designed to achieve structural fire resistance ratings of 90 minutes, using different design strategies. This goal was achieved for all tested column-beam connections. A single test of a moment resisting connection did not lead to a fire resistance rating of 90 minutes, due to timber failure at the smallest cross-section after 86 minutes. The low temperature of the steel fasteners and the limited rotation of the connection, however, suggest that the connection would have been capable of achieving a 90 minutes fire resistance rating if larger beam cross-sections would be used.

    Download full text (pdf)
    fulltext
  • 37.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Qvist, Siri
    ARUP, Netherlands.
    van Straalen, IJsbrand
    TNO, Netherlands.
    Wattez, Yvonne
    ARUP, Netherlands.
    Steenbakkers, Pascal
    ARUP, Netherlands.
    Literatuurstudie - Brandveiligheid en Bouwen met Hout2022Report (Other academic)
    Abstract [nl]

    In opdracht van het Nederlands Normalisatie Instituut (NEN) en in overleg met werkgroep 351 007 00 07 ´Brandveiligheid en bouwen met hout, heeft RISE met medewerking van Arup en TNO een literatuurstudie uitgevoerd. Deze literatuurstudie is stap 1 van meerdere te nemen stappen om antwoord te kunnen geven op motie nr. 28325-220 d.d. 20 april 2021 van de Tweede Kamer waarin wordt geconstateerd dat het Bouwbesluit / Besluit Bouwwerken Leefomgeving nog niet is toegerust op de toenemende toepassing van nieuw of hernieuwd bouwmateriaal, zoals hout, voor nieuwe hoogbouw. Het doel van deze literatuurstudie is specifieke punten te identificeren die aandacht behoeven in de regelgeving om te zorgen voor brandveilige gebouwen waarin veel hout is toegepast. Het onderzoek geeft op basis van literatuur inzicht in nut, achtergronden, noodzaak en relevantie van gebruik van bestaande regelgeving, beoordelingsmethoden en de uitgangspunten daarin. De vervolgstappen op dit rapport omvatten in de literatuurstudie geïdentificeerde punten die aandacht behoeven, waaronder mogelijke aanpassing van de Nederlandse bouwregelgeving en bestaande normen, zoals NEN 6068, NEN 6069 en de Eurocodes 1995-1-2, 1991-1-2 en de in de Eurocode 1995-1-2 aangeduide bepalingsmethode, NEN-EN 13381-7. Uit deze literatuurstudie blijkt onder andere dat: • de huidige brandveiligheidseisen uit het Bouwbesluit / Besluit Bouwwerken Leefomgeving niet zonder meer adequaat zijn voor alle massieve houtconstructies, omdat de huidige prestatie-eisen geen directe relatie kennen met de eventueel verhoogde permanente vuurbelasting; • wanneer de huidige prestatie-eisen uit het Bouwbesluit en BBL worden toegepast voor gebouwen met de nieuwe houten bouwsystemen dan levert dit voor die gebouwen een mogelijke onderschatting van het bereikte veiligheidsniveau, en wordt er mogelijk aan de functionele eisen van het Bouwbesluit en BBL onvoldoende voldaan; • de huidige prestatie-eisen uit het Bouwbesluit / Besluit Brandveiligheid Leefomgeving en bijbehorende bepalingsmethodes (NEN-normen) zijn niet altijd voldoende toegesneden op het beoordelen van nieuwe typen houten bouwsystemen, zoals ‘engineered wood’-producten waaronder CLT (Cross Laminated Timber) en NLT (Nailed laminated timber) en LVL (Laminated veneer lumber). Dit is gerelateerd aan de grotere hoeveelheid brandstof in constructies met deze materialen, waardoor de vuurlast, de brandrisico’s en gevolgen voor de omgeving mogelijk zijn verhoogd. Nader moet worden onderzocht welk deel van de constructie, rekening houdend met repressieve inzet, een bijdrage levert aan de vuurbelasting, intensiteit en de duur van de brand; • het blussen van een brand en de aanvullende brandrisico’s vergen extra inzet, middelen en aandacht van de brandweer voor wat betreft het blussen en volledig doven van smeulende resten in het gebouw (en dus ook in de bouwconstructie); Op basis van de resultaten van het literatuuronderzoek komt de werkgroep tot de conclusie dat de toename van de vuurlast bij houtbouw de brandveiligheid in potentie negatief beïnvloedt. De werkgroep heeft de indruk dat voor gebouwen met een beperkt brandrisico en een beperkte hoeveelheid brandbare bouwmaterialen en hout, en ook met een laag gevolg-risico, de invloed beperkt is en de huidige eisen en bepalingsmethoden mogelijk gehandhaafd kunnen blijven. Voor de overige situaties zullen aanvullende maatregelen of aangepaste bepalingsmethoden moeten worden ontwikkeld, om aanvullende brandrisico’s te beheersen, en/of zullen de eisen en de bepalingsmethodes moeten worden herzien. Om op dit moment aantoonbaar aan de functionele eisen van het Bouwbesluit / Besluit Bouwwerken Leefomgeving te voldoen is een nadere studie op basis van een integrale aanpak, en gebruikmakend van fire safety engineering, nodig. Zowel de op fire safety engineering gebaseerde aanpak als een mogelijke aanscherping van de prestatie-eisen moeten nader worden uitgewerkt.

    Download full text (pdf)
    fulltext
  • 38.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sjöström, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Hallberg, Emil
    Temple, Alastair
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Kahl, Fredrik
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Fire Safety of CLT Buildings with Ex-posed Wooden Surfaces: Summary Report2020Report (Other academic)
    Abstract [en]

    Five real scale compartment fire tests, constructed of CLT slabs and glulam beam and column in accordance with current US product standards, were performed. The compartments had surface areas of exposed mass timber equal to up to two times the area of the floor plan. The 4 hours long tests showed that compartments with such quantities of exposed wood can exhibit continuous decay to hot-spots and embers after flashover. The tests indicate that the presence of two exposed wall surfaces in one corner should be avoided to ensure this.

    Download full text (pdf)
    fulltext
  • 39.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sjöström, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Just, Alar
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Li, Tian
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    van Mierlo, Rudolf
    DGMR, Netherlands.
    Shettihalli Anandreddy, Vikas
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Robijn-Meijers, Patries
    DGMR, Netherlands.
    Limiting flame spread rates in large compartments with visible timber ceilings2023Report (Other academic)
    Abstract [en]

    The number of tall buildings combining both a visible mass timber structure and large open floor plans is growing rapidly introducing new fire safety challenges. One risk is that of very rapid flame spread in the ceiling, originating from a severe but localized fire, resulting in fires where the majority of large compartments burn simultaneously. Such phenomena have been observed in both tests and accidents, but knowledge of effective mitigation without the use of sprinklers is scarce. In Europe, this problem is commonly addressed in construction by complying to prescriptive rules of reaction-to-fire classification of linings. The reaction-to-fire classification, primarily based on the single burning item (SBI) test of EN13832, characterizes the material’s contribution to a fire in the very initial phase of the fire. Treatments can be used to improve the reaction-to-fire class of mass timber, which will reduce the risk of substantial fire development. Fires can, however, develop and grow large even without the contribution of lining materials. For this reason, and in light of the recent findings of research of large open floor plan compartments, it is of interest to assess the effectiveness of treatments to reduce the risk of rapid flame spread. Therefore, eight tests in 18.0 × 2.3 × 2.2 m3 compartments were performed. Six had exposed timber surface with a clear coating or impregnation in the ceiling, complying with a reaction-to-fire class B and two served as untreated timber and non-combustible reference tests. The fire source, representing a fire in moveable fuel, was severe enough (3 - 3.7 MW) for flame impingement on the ceiling. The rate of at which wood ignited from the heat in the ceiling, the temperature development at different heights, as well as external flaming were assessed and were used as indicators of performance. Additional indicators were the estimated tenability and ceiling char depths throughout the compartment. The untreated timber and the non-combustible ceiling represented the two extremes for most indicators with the class-B treated timber surfaces falling in between. Close to the fire source, the test indicators for treated timber surfaces performed similar to those of the untreated timber surface while the non-combustible ceiling performed significantly better. With increasing distance from the fire source, indicators from treated timber tests more resembled the non-combustible ceiling. This behavior was noticed for all types of indicators. With increasing distance from the fire source, the fire exposure is naturally less severe and thus, more similar to the small burner exposure used in SBI-testing which the treatments were developed against. Both final charring depth and temperature developments for ignition and tenability were clearly improved by the treatment, but the SBI test results (FIGRA and THR600s) did not correlate well to the compartment test indicators (Figure 92 andFigure 93). Nevertheless, using treatments assessed by SBI is a common strategy to mitigate fire spread in newly constructed mass timber buildings and practitioners should be aware that while the treatments have significant effects on the flame spread they are not to be treated as incombustible. We propose that addressing the ceiling spread problem requires an additional indicative test with more severe exposure than the SBI test setup. The impregnated timber experienced loss of integrity due to substantial shrinkage of the timber during the severe exposure. Such phenomena were not captured in the SBI testing. Comparisons of performance of the impregnated specimens indicates that it can be beneficial for the performance to implement more impregnation than needed for reaction-to-fire class B. Whether this holds for all treatments cannot be concluded.

    Download full text (pdf)
    fulltext
  • 40.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Su, Joseph
    NRC, Canada.
    Mass timber structures post-fire: A gap analysis2024Report (Other academic)
    Abstract [en]

    With mass timber structural systems being increasingly used in tall and large buildings, the Fire Protection Research Foundation (FPRF) initiated a series of research projects to help address fire safety challenges of tall mass timber buildings. Previously completed projects include a review of mass timber building fire performance, identification and prioritization of research needs, and experimental and modelling works to quantify the contribution of cross laminated timber (CLT) building elements to compartment fires. These projects focused on fire safety and protection of occupants, fire fighters, and property during a fire. A topic that has not been well addressed is the repair of mass timber after a fire event. Tall mass timber buildings are expected to resist significant structural failure or collapse during and after a fire. However, technical information and guidance on how to repair and recertify a mass timber structure after a fire are lacking. Therefore, the Fire Protection Research Foundation initiated this research program is to develop guidance on repair and recertification of mass timber structures after a fire. The objective of this phase of the project was to develop a research plan for future research projects to help bridge the gap in knowledge needed to enable repair and recertification of a mass timber structure after a fire.

  • 41.
    Brandon, Daniel
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Vermina Lundström, Frida
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Mikkola, Esko
    SAFITS - Statistical Analysis of Fires in Timber Structures2021Report (Other academic)
    Abstract [en]

    Due to changes of regulations and product development among other things, the number of multi-storey buildings of timber frame or heavy timber construction has increased consistently in the last two decades. The use of a combustible materials in the structure and the relatively short history with such buildings, has led to insurance related questions regarding risks of property loss. Studies of damages in real fire incidents, where a fair comparison between the fire performance of modern multi-storey timber buildings is made, were lacking. In this study damage data of fire incidents from the USA, Canada, Sweden, New Zealand were found and analyzed. Using different methods the extent of fire damage or the financial damage was compared for fires in multistorey buildings of timber construction types and fires in multistorey buildings of other construction types. For each database a qualitative assessment of the reliability and the fairness of the comparison was made. Also, a comparison, for which only a limited number of fire incidents was available, was made between damages caused in sprinklered fires and damages caused in non-sprinklered fires. In addition to the comparative study also qualitative analysis of 33 high damage fire incidents in multistorey timber buildings was made. The goal of this assessment was to identify the most important details to prevent high damage fires.

    Download full text (pdf)
    fulltext
  • 42.
    Burgén, Julia
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Bram, Staffan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Safety on automated passenger ships: Exploration of evacuation scenarios for coastal vessels2024In: Maritime Transport Research, ISSN 2666-822X, Vol. 6, article id 100110Article in journal (Refereed)
    Abstract [en]

    Many advancements are being made within the domain of autonomous shipping, motivating discussions of corresponding amendments to international safety regulations within the International Maritime Organization. Near-coastal passenger ferries are a form of sea traffic that has been the target of automation trials due to their short voyages and relatively protected waters of operation. This study investigated emergency evacuation from a range of such ships, covering both the current situation (focused on crew tasks, external rescue actors and interactions) and safety aspects that should be considered when automation brings about new work patterns, such as remote supervision and control. The study employed qualitative methods – interviews, field visits and a stakeholder workshop. Results give insight into ferry evacuation processes and challenges in their current form. In addition, results from the application of different automated evacuation scenarios suggest that more detailed studies are needed within the areas of remote operation situation awareness, remote operator and onboard personnel competencies, passenger safety information and communication, simple and robust evacuation equipment, technical means allowing assistance between autonomous and regular ships, and lastly, both procedures and interfaces for collaboration in a changing rescue network. 

    Download full text (pdf)
    fulltext
  • 43.
    Burgén, Julia
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Gehandler, Jonatan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Olofsson, Anna
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Huang, Chen
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Temple, Alastair
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Safe and Suitable Firefighting2022Report (Other academic)
    Abstract [en]

    The level of protection for personal protective equipment (PPE) in firefighting is important for Swedish shipowners; they want to be sure that the equipment they provide is sufficiently safe for the types of fires that can occur onboard. Shipowners also want to be updated on risks related to the carriage of alternative fuel vehicles (AFVs). Safety products and equipment used onboard ships with a European flag must be certified in accordance with the Marine Equipment Directive (MED) and follow the regulations in the International Convention for the Safety of Life at Sea (SOLAS). For fire suits, this means that they must be certified according to one of three standards listed in MED. Two of these standards cover suits used in special cases, with very intense radiant heat, and should only be worn for short periods. The third standard, EN 469, is the same standard that is referred to the PPE Regulation 2016/42, making EN 469-approved fire suits used among European firefighters ashore. However, EN 469 contains two different performance levels where the lower level is not suitable for protection against risks encountered when fighting fires in enclosures. Based on a user study and a risk assessment for AFVs, a set of suggested changes to MED and SOLAS were prepared, together with a set of recommendations for operators that were found important but not subject for regulations. A ready-to-use quick guide, containing the most important results, has been developed for operators.

    Download full text (pdf)
    fulltext
    Download full text (pdf)
    Quick guide
  • 44.
    Charlier, Marion
    et al.
    ArcelorMittal Belval & Differdange, Luxembourg.
    Vassart, Olivier
    ArcelorMittal Belval & Differdange, Luxembourg.
    Glorieux, Antoine
    ArcelorMittal Belval & Differdange, Luxembourg.
    Franssen, Jean-Marc
    Liège University, Belgium.
    Gamba, Antonio
    Liège University, Belgium.
    Dumont, Fabien
    Liège University, Belgium.
    Temple, Alastair
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Sjöström, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Anderson, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety. RISE.
    Welch, Stephen
    University of Edinburgh, UK.
    Xu, Dai
    University of Edinburgh, UK.
    Rush, David
    University of Edinburgh, UK.
    Nadjai, Ali
    Ulster University, UK.
    Alam, Naveed
    Ulster University, UK.
    TRAFIR: Characterization of TRAvelling FIRes in large compartments2020Report (Other academic)
    Abstract [en]

    Inspection of recent fire events in large compartments reveals them to have a great deal of non-uniformity, they generally burn locally and move across floor plates over a period of time. This phenomenon which generates transient heating of the structure is idealized as “travelling fire”.A first series of tests was launched to define a fire load representative of an office building according to Eurocodes. Additional tests where the fire dynamics were controlled were launched to develop an understanding of the fire exposure to steel structures.Then, a second series of large scale tests were performed in real building dimensions. These tests had no artificial control over the dynamics, which allowed a realistic characterization of the fire. The fire load was identical for all tests, only the openings were modified.CFD numerical models were developed to reproduce the experimental campaign and to launch parametrical analyses. This allowed to provide information concerning the conditions which may lead (or not) to a travelling fire scenario.An analytical model for the characterization of a travelling fire was developed and implemented in a simple calculation tool. It allows to evaluate the fire location, the gas temperatures in the flames, the heat fluxes in the different parts of the compartment and the temperature in a steel member. In addition, the methodology is introduced in the FEM software SAFIR and OpenSees.Ultimately, a design guide was prepared including worked examples which are detailed step-by-step and for which the influence of the inputs on the results is analysed.

    Download full text (pdf)
    fulltext
  • 45.
    Correa, Andrea
    et al.
    Luleå University of Technology, Sweden.
    Otxoterena Af Drake, Paul
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Försth, Michael
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Calculating gas emissivities using HITEMP, and engineering approximations of the results2024In: BOOK OF ABSTRACTS Nordic Fire & Safety, RISE Research Institutes of Sweden , 2024, p. 125-Conference paper (Other academic)
  • 46.
    Cuesta, A.
    et al.
    University of Cantabria, Spain.
    Alvear, D.
    University of Cantabria, Spain.
    Carnevale, A.
    CyberEthics Lab, Italy.
    Amon, Francine
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Gender and Public Perception of Disasters: A Multiple Hazards Exploratory Study of EU Citizens2022In: Safety, E-ISSN 2313-576X, Vol. 8, no 3, article id 59Article in journal (Refereed)
    Abstract [en]

    Aim: To explore gender influence on individual risk perception of multiple hazards and personal attitudes towards disaster preparedness across EU citizens. Method: An online survey was distributed to 2485 participants from Spain, France, Poland, Sweden and Italy. The survey was divided into two parts. The first part examined perceived likelihood (L), perceived personal impact (I) and perceived self-efficacy (E) towards disasters due to extreme weather conditions (flood, landslide and storm), fire, earthquake, hazardous materials accidents, and terrorist attacks. The overall risk rating for each specific hazard was measured through the following equation R = (L × I)/E and the resulting scores were brought into the range between 0 and 1. The second part explored people’s reactions to the Pros and Cons of preparedness to compute the overall attitudes of respondents towards preparation (expressed as a ratio between −1 and 1). Results: Although we found gender variations on concerns expressed as the likelihood of the occurrence, personal consequences and self-efficacy, the overall risks were judged significantly higher by females in all hazards (p < 0.01). We also found that, in general, most respondents (both males and females) were in favour of preparedness. More importantly, despite the gender differences in risk perception, there were no significant differences in the attitudes towards preparedness. We found weak correlations between risks perceived and attitudes towards preparedness (rho < 0.20). The intersectional analysis showed that young and adult females perceived higher risks than their gender counterparts at the same age. There were also gender differences in preparedness, i.e., females in higher age ranges are more motivated for preparedness than men in lower age ranges. We also found that risk perception for all hazards in females was significantly higher than in males at the same education level. We found no significant differences between sub-groups in the pros and cons of getting ready for disasters. However, females at a higher level of education have more positive attitudes towards preparedness. Conclusions: This study suggests that gender along with other intersecting factors (e.g., age and education) still shape differences in risk perception and attitudes towards disasters across the EU population. Overall, the presented results policy actions focus on promoting specific DRR policies and practices (bottom-up participatory and learning processes) through interventions oriented to specific target groups from a gender perspective. © 2022 by the authors.

  • 47.
    Dahlbom, Sixten
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Andersson, Stina
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    De Carvalho, Eric
    Bureau Veritas Marine & Offshore, France.
    Lewandowski, Leon
    Bureau Veritas Marine & Offshore, France.
    Evegren, Franz
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Fire Risk Model for Fires in Ro-Ro Ship Ro-Ro Spaces2024In: Journal of Risk Analysis and Crisis Response, ISSN 2210-8491, Vol. 14, no 3, p. 333-355Article in journal (Refereed)
    Abstract [en]

    In recent years, fire accidents on Ro-Ro ships have led to numerous fatalities and significant economic losses. The response of the crew and the ship's protection systems are crucial in managing these incidents and mitigating their consequences. To assess fire safety improvements, this study has focused on developing and quantifying a risk model that captures the dynamics of a fire starting in a Ro-Ro space. Various risk modelling techniques were reviewed to construct the model, which was then quantified using historical data, simulations, and expert judgments. A Delphi-based, fully digital approach to expert elicitation was introduced, utilizing Microsoft Teams and Microsoft Excel-based questionnaires. This method ensured full anonymity for the experts, reducing the risk of group bias and eliminating the need for travel. To enhance understanding and verify the results, uncertainty and sensitivity analyses were performed. They revealed that the potential loss of life deviated, with 90% confidence, from the calculated mean value by less than 26%. Overall, the questionnaire-based method proved effective for expert elicitation and for quantifying nodes in the risk model, demonstrating its utility in the risk assessment process.

    Download full text (pdf)
    fulltext
  • 48.
    Dahlbom, Sixten
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Anerud, Erik
    SLU Swedish University of Agricultural Sciences, Sweden.
    Lönnermark, Anders
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Pushp, Mohit
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    A theoretical evaluation of the impact of the type of reaction on heat production and material losses in biomass piles2023In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 11, no 12, p. 2693-Article in journal (Refereed)
    Abstract [en]

    Self-heating during storage of biomass in piles causes material losses, leads to emissions to air, and poses a risk of fire. There are different techniques to assess a biomass material's propensity for self-heating, some of these are briefly reviewed. One of these techniques is isothermal calorimetry, which measures thermal power from materials and produces time-resolved curves. A recently developed and published test standard, ISO 20049-1:2020, describes how the self-heating of pelletized biofuels can be determined by means of isothermal calorimetry and how thermal power and the total heat produced during the test should be measured by isothermal calorimetry. This paper supports interpretation of the result obtained by isothermal calorimetry; the mentioned standard provides examples of peak thermal power and total heat but does not provide any assistance on how the result from isothermal measurements should be interpreted or how the result from measurements on different samples could be compared. This paper addresses the impact of different types of reactions, peak thermal power, total heat released (heat of reaction), activation energy, heat conductivity, and pile size on the temperature development in a generic pile of biomass. This paper addresses important parameters when the result from isothermal calorimetry is evaluated. The most important parameter, with respect to temperature development in large piles, was found to be the total heat released. It was also proposed that safe storage times, that is, the time until a run-away of the temperature in the pile, could be ranked based on the time to the peak thermal power.

  • 49.
    Dahlbom, Sixten
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Bjarnemark, Fanny
    RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.
    Nguyen, Björn
    RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Methodology, Textiles and Medical Technology.
    Mallin, Tove
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Analysis of per- and polyfluoroalkyl substances (PFAS) extraction from contaminated firefighting materials: Effects of cleaning agent, temperature, and chain-length dependencies2024In: Emerging Contaminants, ISSN 2405-6650, E-ISSN 2405-6642, Vol. 10, no 3, p. 100335-100335, article id 100335Article in journal (Refereed)
    Abstract [en]

    This investigation delves into the extraction dynamics of 22 per- and polyfluoroalkyl substances from PFAS contaminated firefighting materials. Two distinct test sets were executed: one contrasting a commercial product with water following an elaborate decontamination procedure, and the other assessing seven washing agents on materials from firefighting installations, with one agent examined at 22 °C and 50 °C. A general tendency for improved desorption at the higher temperature was observed. Furthermore, a discernible influence of the cleaning agent's pH on the extraction of specific PFAS species was observed, elucidating the role of chemical environment in the extraction process. PFAS rebound was studied for a period of up to 157 days, this unveiled a gradual escalation in PFAS22 levels, indicative of a protracted desorption mechanism. Intriguingly, PFAS with abbreviated carbon chains (C4–C6) exhibit superior desorption efficiency compared to their elongated congeners, suggesting a chain-length-dependent decontamination potential. A comparative scrutiny between a commercially available cleaning product, featuring multiple washing and flushing steps, and a water-only treatment regimen underscores the potential efficacy of the former. This exhaustive investigation furnishes nuanced insights into PFAS extraction complexities, offering a foundation for informed decontamination strategies

    Download full text (pdf)
    fulltext
  • 50.
    Dahlbom, Sixten
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.
    Davidsson, Kent
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Johansson, Inge
    RISE Research Institutes of Sweden.
    Jonasson, Anna
    E.ON., Sweden.
    Vatten RUI, Marius Haakon
    NOAH.
    Sjöblom, Rolf
    Tekedo, Sweden.
    Östrem, Sofie
    Linköping University, Sweden.
    Minimering av vätgasrelaterade risker från avfallseldade CFB-pannor2020Report (Other academic)
    Abstract [en]

    There are operating parameters that affect the hydrogen formation from APC-residues generated in waste fired CFB-boilers. There are also reasons to be careful and take extra consideration to safety aspects in environments where the APC-residue has been exposed to water. It is well known that if the APC-residues generated from waste fired CFB-boilers are exposed to water; hydrogen gas is formed. The overall aim of the project has been to decrease the work environment hazards related to hydrogen formation from these APC-residues. Another aim has also been to increase the general knowledge related to these hydrogen related hazards. This has been accomplished by exploring which operating parameters and general mechanisms that affect the hydrogen formation from the APC-residues. Both total amount of gas formed as well as the velocity of the gas formation has been of interest. The APC-residues used in this project have been from P14 and P15 at the waste-to-energy plant Händelöverket, owned and operated by E.ON. In literature there are almost no publications on the hydrogen gas formation from APC residues generated by waste fired CFB boilers. There are some related to waste fired grate boilers though. Conclusions and theories from literature data must be put together from results regarding similar materials in totally different environments. The experimental results indicate a difference in the hydrogen formation from APCresidues originating from P14 and P15. The bed material used in the boilers is also one of the operational parameters that seems to affect the reactivity of the APCresidue. The introduction of a share of Ilmenite in the bed material seems to have lowered the amount of hydrogen gas formed, alternatively it delayed the formation. Other operational conditions that was considered was a decreased thermal load, lowered amount of ammonia added to reduce NOx, and storage/aging of ash in the NID-reactor while it was not running on full capacity. There are indications that these conditions also affect the reactivity, however there are too few data available to make specific conclusions. In general, it seems difficult to control the reactivity of the APC-residue while keeping normal production in the plant. In fouling samples, from different parts of the boilers, levels of metallic aluminium fully comparable to those in the APC-residue were detected. Thus, there is a significant risk of hydrogen formation when using wet cleaning methods during maintenance stops. Proper ventilation and education are two of the recommendations to mitigate the risks. A potential logistic chain for APC-residues, based on ship transports, was risk assessed. Since the hydrogen formation differs greatly between different ash deliveries, an important conclusion was that it is hazardous to generalise the results, especially by using average hydrogen formation rates. Another conclusion was that consideration must be made for the fact that the hydrogen formation might be delayed and might not arise until the APC-residue is treated mechanically

123456 1 - 50 of 265
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf