A survey analysis and chemical characterization methodology for inhomogeneous solid waste samples of relatively large samples (typically up to 100 g) using X-ray fluorescence following a general homogenization procedure is presented. By using a combination of acid digestion and grinding various materials can be homogenized e.g. pure metals, alloys, salts, ores, plastics, organics. In the homogenization step, solid material is fully or partly digested in a mixture of nitric acid and hydrochloric acid in an open vessel. The resulting mixture is then dried, grinded, and finally pressed to a wax briquette. The briquette is analyzed using wave-length dispersive X-ray fluorescence with fundamental parameters evaluation. The recovery of 55 elements were tested by preparing samples with known compositions using different alloys, pure metals or elements, oxides, salts and solutions of dissolved compounds. It was found that the methodology was applicable to 49 elements including Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Ta, W, Re, Ir, Pt, Au, Tl, Pb, Bi, and Th, that all had recoveries >0.8. 6 elements were lost by volatilization, including Br, I, Os, and Hg that were completely lost, and S and Ge that were partly lost. Since all lanthanides are chemically similar to La and Ce, all actinides are chemically similar to Th, and Hf is chemically similar to Zr, it is likely that the method is applicable to 77 elements. By using an internal standard such as strontium, added as strontium nitrate, samples containing relatively high concentrations of elements not measured by XRF (hydrogen to fluorine), e.g. samples containing plastics, can be analyzed.