Oxygen electrocatalysts play a key role in renewable and fossil-free energy production. Bifunctional catalysts active for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) allow use of the same material system for both energy production (ORR) and fuel generation (OER). However, optimizing the performance of bifunctional catalysts requires in depth understanding of the catalyst structure, its surface chemistry in terms of active sites and the underlying catalytic mechanism. Here, the catalytic performance of CoCrFeNi thin films is investigated, synthesized using high-power impulse magnetron sputtering, as bifunctional oxygen electrocatalysts. The film crystal structure and morphology, and thereby the catalytic performance, can be tuned by the ion acceleration (bias) to the substrate. To further enhance the catalytic activity, anodization is used to electrochemically modify the films, forming a thicker oxide layer enriched in Co and Ni cations which significantly improves the ORR performance. Anodization improves the catalyst stability during OER, with an OER potential of 1.45 V versus the reversible hydrogen electrode (RHE) at 10 mA cm−2 for more than 24 h. While the corrosion resistance is high both before and after anodization, in terms of catalytic activity the anodized films outperformed the as-deposited ones. This makes anodized films excellent electrocatalyst candidates in corrosive alkaline environments such as fuel cells and electrolyzers.
This study was performed within the Competence Centre FunMat-II and was funded by the Swedish Agency for Innovation Systems (VINNOVA, grant nos. 2022-03071 2016–05156, and 2019–04881). The authors also acknowledge the Swedish Energy Agency for funding (grant nos. 2020-024828 and 52740-1) and the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009 00971).