Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Digital Twin for Tuning of Server Fan Controllers
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0003-4293-6408
RISE Research Institutes of Sweden.
RISE Research Institutes of Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-9759-5594
Vise andre og tillknytning
2019 (engelsk)Inngår i: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 2019, s. 1425-1428Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cooling of IT equipment consumes a large proportion of a modern data centre’s energy budget and is therefore an important target for optimal control. This study analyses a scaled down system of six servers with cooling fans by implementing a minimal data driven time-series model in TensorFlow/Keras, a modern software package popular for deep learning. The model is inspired by the physical laws of heat exchange, but with all parameters obtained by optimisation. It is encoded as a customised Recurrent Neural Network and exposed to the time-series data via n-step Prediction Error Minimisation (PEM). The thus obtained Digital Twin of the physical system is then used directly to construct a Model Predictive Control (MPC) type regulator that executes in real time. The MPC is then compared in simulation with a self-tuning PID controller that adjust its parameters on-line by gradient descent.

sted, utgiver, år, opplag, sider
2019. s. 1425-1428
Serie
IEEE International Conference on Industrial Informatics (INDIN)
Emneord [en]
RNN, PEM, TensorFlow, MPC, Digital Twin
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-64221DOI: 10.1109/INDIN41052.2019.8972291OAI: oai:DiVA.org:ri-64221DiVA, id: diva2:1742678
Konferanse
2019 IEEE 17th International Conference on Industrial Informatics (INDIN)
Merknad

ISBN för värdpublikation: 978-1-7281-2927-3, 978-1-7281-2928-0

Tilgjengelig fra: 2023-03-10 Laget: 2023-03-10 Sist oppdatert: 2023-06-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Brännvall, RickardGustafsson, JonasSummers, Jon

Søk i DiVA

Av forfatter/redaktør
Brännvall, RickardGustafsson, JonasSummers, Jon
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 29 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0