System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
Link to record
Permanent link

Direct link
Publications (10 of 17) Show all publications
Alfredsson, H., Hellgren, J., Persson, M., Strandberg, T., Maroju, A., Toss, H., . . . Colpier, U. (2024). Air-Charge : Feasibility study on system demonstrator for high-power charging of battery-electric aircraft. RISE Research Institutes of Sweden
Open this publication in new window or tab >>Air-Charge : Feasibility study on system demonstrator for high-power charging of battery-electric aircraft
Show others...
2024 (English)Report (Other academic)
Abstract [en]

What was studied? This report studies the possibilities and challenges of establishing a high-power charging system for battery-electric aircraft (EA) within an operational airport environment, with a particular focus on enabling short turnaround times (TAT). The study integrates perspectives from a diverse group of stakeholders, including an airport owner, a charging equipment solution provider, an aircraft developer, a research institute, an innovation arena, and a testbed operator. The aim is to significantly enhance the common understanding and identify viable pathways for the efficient and safe implementation of EA charging systems. The report addresses the three key subsystems (airport, charging equipment, and aircraft) detailing their specific requirements, including e.g. technical, operational, regulatory, and safety considerations, followed by identification and evaluation of possible power system topologies and conceptual charging solutions. Smart control of EA charging systems is explored and modeled to support adequate system design and optimal utilization of available power capacity. Additionally, the report presents measurement results from an operational airport to better understand the current electromagnetic compatibility (EMC) environment. It also includes a review of aviation cybersecurity and offers initial recommendations for future risk assessments to ensure an efficient and safe deployment of EA charging systems. 

Place, publisher, year, edition, pages
RISE Research Institutes of Sweden, 2024. p. 122
Series
RISE Rapport ; 2024:88
Keywords
Aviation, electric aircraft, airport, charging infrastructure, topologies, conceptualization, electromagnetic compatibility, cybersecurity, risk assessment
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-76248 (URN)978-91-89971-50-9 (ISBN)
Note

Air-Charge was funded by the Swedish Transport Administration (Trafikverket) under TRV 2023/34442. 

Available from: 2024-12-03 Created: 2024-12-03 Last updated: 2024-12-16Bibliographically approved
Hellgren, J., Persson, M. & Alfredsson, H. (2024). Airport Charging System Designs and Power Management for Megawatt-Level Charging of Battery-Electric Aircraft. In: ICAS Proceedings: . Paper presented at 34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024.Florence, Italy. 9 September 2024through 13 September 2024. International Council of the Aeronautical Sciences
Open this publication in new window or tab >>Airport Charging System Designs and Power Management for Megawatt-Level Charging of Battery-Electric Aircraft
2024 (English)In: ICAS Proceedings, International Council of the Aeronautical Sciences , 2024Conference paper, Published paper (Refereed)
Abstract [en]

The adoption of electric aircraft (EA) offers notable environmental advantages by mitigating greenhouse gas emissions and enhancing regional accessibility through reduced operational costs. Despite these benefits, EA faces significant challenges, partly in achieving practical operational ranges and developing robust airport charging infrastructures. The infrastructure challenge is compounded by the need for rapid turnaround times (TAT) in regional aviation, requiring high-power charging solutions above 1 MW. This paper explores various topologies for EA power supply systems and discusses pros and cons with those. Furthermore, an optimization model is developed using quadratic programming (QP) to allocate charging power among multiple aircraft, ensuring efficient and reliable operations under different system configurations. Simulations evaluate the performance of these configurations, highlighting the impact of grid power capacity, dimensioning of battery energy storage systems (BESS), and number of charging stands on system feasibility. The findings in this paper provide a foundational framework for designing airport infrastructures capable of supporting a growing demand for electric aviation, ensuring efficient power management and minimal operational disruptions. 

Place, publisher, year, edition, pages
International Council of the Aeronautical Sciences, 2024
Series
ICAS Proceedings, ISSN 10259090
Keywords
Battery management systems; Battery storage; Benchmarking; Charging stations; State of charge; Structural dynamics; Virtual storage; Airport design; Charging infrastructures; Charging systems; Electric aircrafts; Greenhouse gas emissions; High power; Operational range; Optimisations; Power; Turn-around time; Quadratic programming
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-76214 (URN)2-s2.0-85208779241 (Scopus ID)
Conference
34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024.Florence, Italy. 9 September 2024through 13 September 2024
Note

This paper emerges from collaborative efforts within two Swedish research projects [16][17], funded by the Swedish Transport Administration, involving multiple key stakeholders within EA development, airports, air traffic management, charging equipment manufacturing, energy companies, research institutes, and academia.

Available from: 2024-11-27 Created: 2024-11-27 Last updated: 2024-11-27Bibliographically approved
Hellgren, J., Persson, M. & Alfredsson, H. (2024). Airport Charging System Designs and Power Management for Megawatt-Level Charging of Battery-Electric Aircraft. In: ICAS Proceedings: . Paper presented at 34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024. Florence, Italy. 9 September 2024 through 13 September 2024. International Council of the Aeronautical Sciences
Open this publication in new window or tab >>Airport Charging System Designs and Power Management for Megawatt-Level Charging of Battery-Electric Aircraft
2024 (English)In: ICAS Proceedings, International Council of the Aeronautical Sciences , 2024Conference paper, Published paper (Refereed)
Abstract [en]

The adoption of electric aircraft (EA) offers notable environmental advantages by mitigating greenhouse gas emissions and enhancing regional accessibility through reduced operational costs. Despite these benefits, EA faces significant challenges, partly in achieving practical operational ranges and developing robust airport charging infrastructures. The infrastructure challenge is compounded by the need for rapid turnaround times (TAT) in regional aviation, requiring high-power charging solutions above 1 MW. This paper explores various topologies for EA power supply systems and discusses pros and cons with those. Furthermore, an optimization model is developed using quadratic programming (QP) to allocate charging power among multiple aircraft, ensuring efficient and reliable operations under different system configurations. Simulations evaluate the performance of these configurations, highlighting the impact of grid power capacity, dimensioning of battery energy storage systems (BESS), and number of charging stands on system feasibility. The findings in this paper provide a foundational framework for designing airport infrastructures capable of supporting a growing demand for electric aviation, ensuring efficient power management and minimal operational disruptions. 

Place, publisher, year, edition, pages
International Council of the Aeronautical Sciences, 2024
Keywords
Battery management systems; Battery storage; Benchmarking; Charging stations; State of charge; Structural dynamics; Virtual storage; Airport design; Charging infrastructures; Charging systems; Electric aircrafts; Greenhouse gas emissions; High power; Operational range; Optimisations; Power; Turn-around time; Quadratic programming
National Category
Environmental Engineering
Identifiers
urn:nbn:se:ri:diva-76093 (URN)2-s2.0-85208779241 (Scopus ID)
Conference
34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024. Florence, Italy. 9 September 2024 through 13 September 2024
Available from: 2025-01-29 Created: 2025-01-29 Last updated: 2025-01-29Bibliographically approved
Hillberg, E., Weihs, E., Fagerlönn, J., Sandels, C., Belking, J., Apanasevic, T., . . . Carlmark, E. (2024). Standards-based interoperable Testbed for Development and Assessment of stability monitoring Applications in the Nordic interconnected Grid. In: CIGRE Session: . Paper presented at CIGRE Session, Paris, 26-30 Augusti 2024. CIGRE
Open this publication in new window or tab >>Standards-based interoperable Testbed for Development and Assessment of stability monitoring Applications in the Nordic interconnected Grid
Show others...
2024 (English)In: CIGRE Session, CIGRE , 2024Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
CIGRE, 2024
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-76400 (URN)
Conference
CIGRE Session, Paris, 26-30 Augusti 2024
Available from: 2025-01-20 Created: 2025-01-20 Last updated: 2025-01-20Bibliographically approved
Ollas, P., Thiringer, T., Persson, M. & Markusson, C. (2023). Battery loss prediction using various loss models: A case study for a residential building. Journal of Energy Storage, 70, Article ID 108048.
Open this publication in new window or tab >>Battery loss prediction using various loss models: A case study for a residential building
2023 (English)In: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 70, article id 108048Article in journal (Refereed) Published
Abstract [en]

This work compares and quantifies the annual losses for three battery system loss representations in a case study for a residential building with solar photovoltaic (PV). Two loss representations consider the varying operating conditions and use the measured performance of battery power electronic converters (PECs) but differ in using either a constant or current-dependent internal battery cell resistance. The third representation is load-independent and uses a (fixed) round trip efficiency. The work uses sub-hourly measurements of the load and PV profiles and includes the results from varying PV and battery size combinations. The results reveal an inadequacy of using a constant battery internal resistance and quantify the annual loss discrepancy to −38.6%, compared to a case with current-dependent internal resistance. The results also show the flaw of modelling the battery system’s efficiency with a fixed round trip efficiency, with loss discrepancy variation between −5 to 17% depending on the scenario. Furthermore, the necessity of accounting for the cell’s loss is highlighted, and its dependence on converter loading is quantified.

Keywords
Battery energy storage system, Lithium-ion batteries, Solar photovoltaic system, Battery performance, Applied research
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-65662 (URN)10.1016/j.est.2023.108048 (DOI)
Funder
Swedish Energy Agency, 43276-1Swedish Energy Agency, 47273-1Swedish Energy Agency
Note

Funded by the Swedish Energy Agency (’’Energimyndigheten’’) through grant numbers: 43276-1 and 47273-1.

Available from: 2023-07-12 Created: 2023-07-12 Last updated: 2023-08-28Bibliographically approved
Ollas, P., Thiringer, T., Persson, M. & Markusson, C. (2023). Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage. Energies, 16(3), Article ID 1131.
Open this publication in new window or tab >>Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage
2023 (English)In: Energies, E-ISSN 1996-1073, Vol. 16, no 3, article id 1131Article in journal (Refereed) Published
Abstract [en]

This work presents a comparison of alternating current (AC) and direct current (DC) distribution systems for a residential building equipped with solar photovoltaic (PV) generation and battery storage. Using measured PV and load data from a residential building in Sweden, the study evaluated the annual losses, PV utilization, and energy savings of the two topologies. The analysis considered the load-dependent efficiency characteristics of power electronic converters (PECs) and battery storage to account for variations in operating conditions. The results show that DC distribution, coupled with PV generation and battery storage, offered significant loss savings due to lower conversion losses than the AC case. Assuming fixed efficiency for conversion gave a 34% yearly loss discrepancy compared with the case of implementing load-dependent losses. The results also highlight the effect on annual system losses of adding PV and battery storage of varying sizes. A yearly loss reduction of 15.8% was achieved with DC operation for the studied residential building when adding PV and battery storage. Additionally, the analysis of daily and seasonal variations in performance revealed under what circumstances DC could outperform AC and how the magnitude of the savings could vary with time. © 2023 by the authors.

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
battery storage, building energy system, direct current, energy savings, power electronic converter, solar photovoltaic, Digital storage, Electric batteries, Electric impedance measurement, Electric power distribution, Energy dissipation, Housing, Power converters, Power electronics, Solar concentrators, Solar power generation, Alternating current, Building energy systems, Direct current distributions, Direct-current, Energy-savings, Power electronics converters, Residential building, Solar photovoltaics, Energy conservation
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-64102 (URN)10.3390/en16031131 (DOI)2-s2.0-85147846467 (Scopus ID)
Note

 Correspondence Address: Ollas P, RISE, Sweden; email: patrik.ollas@ri.se; Funding details: Energimyndigheten, 43276–1, 50986–1; Funding text 1: The Swedish Energy Agency funded this research through the national project “From photovoltaic generation to end-users with minimum losses—a full-scale demonstration” (2018–2020, grant number 43276–1) and the national project “Flexibility and energy efficiency in buildings with PV and EV charging” (2020–2023, grant number 50986–1).

Available from: 2023-02-28 Created: 2023-02-28 Last updated: 2023-08-28Bibliographically approved
Björnsson, L.-H., Edvall, M., Persson, M., Strandberg, T., Emmanouilidis, D., Envik, C., . . . Svedlund, J. (2023). Laddinfrastruktur och frekvensreglering: en fallstudie.
Open this publication in new window or tab >>Laddinfrastruktur och frekvensreglering: en fallstudie
Show others...
2023 (Swedish)Report (Other academic)
Abstract [sv]

För att elnätet ska fungera måste frekvensen hållas inom snäva gränser och därför handlar Svenska Kraftnät upp olika typer av stödtjänster för frekvensreglering. De senaste åren har kostnaderna för dessa tjänster ökat kraftigt, bland annat till följd av en allt högre andel intermittent elproduktion. Behoven är prognostiserade att öka ytterligare under de kommande åren. Detta har skapat ett ökat intresse för batterier och deras möjligheter att stödja elnätet. Men batterier och tillhörande kraftelektronik är kostsamt. Samtidigt finns en stor och alltjämt växande batterikapacitet i landets elbilar och med hjälp av dubbelriktad laddning, så kallad vehicle-to-grid öppnas nya möjligheter att komma åt denna potential för att på ett mer resurseffektivt sätt balansera elnätet. Projektets övergripande mål har varit att utreda hur standardisering kan användas för att påskynda och öka användandet av elbilar som resurs för flexibilitetstjänster till elnätet. Bland annat har en fallstudie genomförts av Axess Logistics anläggning i Malmö hamn och möjligheterna för att deras långtidsparkerade elbilar ska kunna leverera frekvensreglering till elnätet har studerats. Resultaten visar på att studerade standarder i stort inte utgör ett direkt hinder för användandet av elbilar för frekvensreglering men att förändringar av exempelvis ISO15118 skulle kunna öka möjligheterna att använda elbilar för att leverera frekvensreglering. Till exempel genom införande av krav på mätnoggrannhet på aktiv effekt, förkortning av tillåtna svarstider, krav på lokal frekvensmätning med god noggrannhet. För långtidsparkerade bilar vore det framförallt värdefullt att arbeta fram, och i standard beskriva, en funktion där elbilens BMS kan uppmanas av EVSE att hålla batteriet i ett tillstånd där det kan användas för att snabbt svara på en begäran om i-/urladdning. Detta så att elbilen kan vara förberedd för frekvensreglering även om den för stunden inte aktivt laddar eller matar effekt till elnätet. Detta en åtgärd som skulle kunna ha stor positiv påverkan på möjligheterna för långtidsparkerade elbilar att leverera frekvensreglering. Exemplifierande användarcykler för långtidsparkerade bilar har studerats för FCR-N och FCR-D. Resultaten visar att den förväntade cyklingen skiljer stort mellan dessa olika frekvensregleringstjänster och antyder att valet av frekvensregleringstjänst behöver studeras utifrån både förväntad ekonomi och eventuellt batterislitage. Överslagsräkningar på eventuella intäkter från deltagande i frekvensreglering har genomförts och de preliminära resultaten visar att investering av dyrare laddinfrastruktur som klarar Vehicle-to-Grid skulle kunna återbetalas inom ett år med 2022 års nivåer av ersättning för frekvensreglering. I en framtid där nya elbilar antas ha stöd för Vehicle-to-Grid har potentialen för att använda långtidsparkerade elbilar på logistikanläggningar till frekvensreglering preliminärt bedömts ligga mellan 110 och 165 MW för svenska förhållanden. Detta motsvarar ca 5-8% av den nordiska FCR-marknaden. På sikt kan också långtidsparkerade bilar hos återförsäljare, flygplatser med mera att utgöra en betydande potential.

Publisher
p. 37
Series
RISE Rapport ; 2023:23
National Category
Energy Engineering
Identifiers
urn:nbn:se:ri:diva-64116 (URN)978-91-89757-68-4 (ISBN)
Available from: 2023-03-01 Created: 2023-03-01 Last updated: 2024-05-21Bibliographically approved
Hamon, C. & Persson, M. (2023). Wind power participation in frequency regulation: a profitability assessment for Sweden.
Open this publication in new window or tab >>Wind power participation in frequency regulation: a profitability assessment for Sweden
2023 (English)Report (Other academic)
Abstract [en]

In this report, a framework was developed to assess the profits from participating in the different ancillary services for frequency regulation in Sweden. The framework considers forecasting errors on both production and prices, market clearing times and technical requirements of the difference ancillary services. The framework was applied to evaluate potential profits for a real wind power plant of 2 MW in SE3 in 2020 and 2021. The economic analysis points out to aFRR down as the most profitable market today with additional revenue of as much as 35% compared to day-ahead only in case of perfect production forecasts, and as much as 22 % with consideration of standard production forecast errors. It is also shown that developing bidding strategies based on price forecasting to act on several ancillary service market may increase the revenues by up to 70% compared to day-ahead only. Future work in the topic includes evaluating the profits in other price areas and evaluating different production and price forecast methodologies and their impact on the profits.

Series
RISE Rapport ; 2022:42
Keywords
Wind power, frequency regulation, ancillary services markets, FFR, FCRN, FCR-D, mFRR, aFRR, profitability assessment
National Category
Energy Systems
Identifiers
urn:nbn:se:ri:diva-64365 (URN)978-91-89561-80-9 (ISBN)
Available from: 2023-04-19 Created: 2023-04-19 Last updated: 2023-05-25Bibliographically approved
Chamorro, H. R., Orjuela-Cañón, A. D., Ganger, D., Persson, M., Gonzalez-Longatt, F., Alvarado-Barrios, L., . . . Martinez, W. (2021). Data-driven trajectory prediction of grid power frequency based on neural models. Electronics, 10(2), Article ID 151.
Open this publication in new window or tab >>Data-driven trajectory prediction of grid power frequency based on neural models
Show others...
2021 (English)In: Electronics, E-ISSN 2079-9292, Vol. 10, no 2, article id 151Article in journal (Refereed) Published
Abstract [en]

Frequency in power systems is a real-time information that shows the balance between generation and demand. Good system frequency observation is vital for system security and pro-tection. This paper analyses the system frequency response following disturbances and proposes a data-driven approach for predicting it by using machine learning techniques like Nonlinear Autoregressive (NAR) Neural Networks (NN) and Long Short Term Memory (LSTM) networks from simulated and measured Phasor Measurement Unit (PMU) data. The proposed method uses a horizon-window that reconstructs the frequency input time-series data in order to predict the frequency features such as Nadir. Simulated scenarios are based on the gradual inertia reduction by including non-synchronous generation into the Nordic 32 test system, whereas the PMU collected data is taken from different locations in the Nordic Power System (NPS). Several horizon-windows are experimented in order to observe an adequate margin of prediction. Scenarios considering noisy signals are also evaluated in order to provide a robustness index of predictability. Results show the proper performance of the method and the adequate level of prediction based on the Root Mean Squared Error (RMSE) index. © 2021 by the authors.

Place, publisher, year, edition, pages
MDPI AG, 2021
Keywords
Deep learning, Frequency response, Low-inertia power systems, Machine learning, Nadir estimation, Non-synchronous generation, Primary frequency control, Wind power
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-52020 (URN)10.3390/electronics10020151 (DOI)2-s2.0-85099418991 (Scopus ID)
Note

Funding details: 350202; Funding text 1: Funding: This work was supported by by the Laboratorio de Simulación Hardware-in-the-loop para Sistemas Ciberfísicos (LaSSiC). Código: 350202.

Available from: 2021-01-26 Created: 2021-01-26 Last updated: 2023-05-25Bibliographically approved
Hillberg, E., Pihl, H., Persson, M., Weihs, E., Csőre, M., Tóth, Á., . . . Samuelsson, O. (2020). D1.1 Overview of need-owners and their needs: ANM4L, Januari 2020.
Open this publication in new window or tab >>D1.1 Overview of need-owners and their needs: ANM4L, Januari 2020
Show others...
2020 (English)Report (Other academic)
Publisher
p. 15
National Category
Business Administration
Identifiers
urn:nbn:se:ri:diva-58767 (URN)
Note

This project has received funding in the framework of the joint programming initiative ERA-Net Smart Energy Systems, with support from the European Union’s Horizon 2020 research and innovation programme. 

Available from: 2022-03-02 Created: 2022-03-02 Last updated: 2023-05-25Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-3608-5264

Search in DiVA

Show all publications