A Higher Order Logic Parser for Natural Language
Implemented in Lambda Prolog

by
Per Kreuger

SICS R88008
Research Report
ISSN 0283-3638



A Higher Order Logic Parser for Natural Language
Implemented in Lambda Prolog.

Per Kreuger

Swedish Institute of Computer Science
Box 1263
S-164 28 KISTA
Sweden

Keywords:

Higer Order Logic, Montague Sematics, Natural Language Interpretation.

Abstract:

This paper describes an implementation of some of the ideas presented by F. C. N.
Pereira in [1]. Pereira uses a sequent-calculus like system to produce Montague
semantics from natural language. The lefthand sequent can be interpreted as a set of
constraints under which a given sentence fragment has a certain interpretation. Pereira
presents a few complementary "discharge-rules” to reduce the number of such
constraints. These conditional interpretations constitute a uniform way to represent
partial knowledge during the parsing process.

The implementation this paper describes is done in Lambda Prolog [2]. Lambda
Prolog is a generalization of horn-clause logic to higher order logic, based on the higher
order unification procedure of Huet [3]. It appears that the implementation of Pereira’s
system in Lambda Prolog becomes very natural. The higher order unification
mechanism of Lambda Prolog takes care of the complicated binding mechanisms in
Pereira’s "discharge-rules" in a very simple and elegant way.

Finally the paper discusses some problems with the implementation and gives a few
suggestions on how these could be overcome.



1. A short review of Pereiras ideas.

In his paper Towards a Deductive Theory of Sentence Interpretation, Pereira suggests
a method to avoid the limitation of strict compositionality in semantic interpretation of
natural language. The basic idea is to use an intermediate representation, that has a
compositional nature, and special functions (or rather relations) mapping this
intermediate representation into its logical form, i.e. Montague semantics.

A problem with compositional semantics is lack of information during the
translation process. If the interpretation could be made conditional, this lack of
information would not be fatal. We could make this conditional interpretation our
intermediate representation. It would not represent the interpretation of the sentence but
rather be a constraint on the possible interpretations of the sentence.

Pereira partitions the rules of a grammar into two kinds: 1) structural rules, that are
strictly compositional, 2) discharge rules, that apply when certain types of conditions
occur in the condition part of the conditional interpretation.

Pereira uses a system similar to sequent calculus to encode the rules of his
grammar. This has the drawback that the discharge rules have to be complemented by
supplementary constraints on the variables occurring in the conditional interpretations.
This is, as we shall see, a mayor source of difficulties of this implementation as well.

The idea of conditional interpretations and the simplicity with which it is used in
Pereira’s system seems to me a very promising line of investigation.

2. Lambda prolog.

Lambda Prolog is a logic programming language based on a generalization of horn-
clause logic to higher order logic. It uses a special form or resolution [4] and the higher
order unification procedure of Huet [3]. The syntax of Lambda Prolog permits
abstraction and application in the manner of a strongly typed A-calculus. This gives us
the possibility to compute and use real functions in a logic programming framework.
Of course, in many cases this leads to intractable problems, but Lambda Prolog seems
to prove itself in more and more applications in spite of its fundamental incompleteness.

I have no space here to go further into a presentation of the language itself. I
recommend interested readers to get Miller’s & Nadathur’s presentation of the language
[2], or one of several other papers they published, describing various applications of
the language.



I will give a short description of the syntax of the language to aid the reader in
following the examples and pieces of code present in this paper.

Lambda Prolog uses function application and abstraction. The syntax of application
is simply a sequence of terms, i.e."f a b" represents the result of applying the
function f to its arguments a and b. Syntactically predicates are just a special case of
functions (those returning boolean values), so the the call of a predicate looks just like a
function application.

The syntax of abstraction uses the \ operator. Ax.g(x) is represented as
X \ (g X). There is also a special syntax for lists similar to the one used in standard

prolog. "," is used both as a list-element-delimiter and as a logical conjunction, "; " is
a logical disjunction.

3. Basic ideas of the implementation

The implementation uses a dcg-like grammar with two additional arguments to record
the list of constraints under which the current interpretation is valid.

For example:

sent (VP NP) Cl1l C3 L1 L3 :-
np NP C1 C2 Ll LZ,
vp VP C2 C3 L2 L3.

says that the interpretation (VP NP) of the sentence represented by the d-list 1.1-1.3 is
the interpretation of a verb-phrase v applied to the interpretation of a noun-phrase NP,
under the condition of the conjunction c1-C3 of the constraints represented by the two
d-lists c1-c2 and c2-c3. The discharge rules can be applied if certain conditions on
the types of the terms constituting the interpretation are met. In addition to this certain
conditions on the occurrences of variables in the set of constraints must be met. The
types of the interpretations are in general dependent on what rule produced the partial
interpretation. This means that calls to the discharge-rules can be inserted in the
structural rules of the grammar in appropriate places.

For example the grammar rule mentioned above actually has the form:

sent S C1 C4 L1 L3 :-
np NP C2 C3 Ll L2,
vp VP C3 C4 L2 L3,
gprop (VP NP) S C2 Cl1 C4.



where qgprop is a discharge-rule that may be applied to the the interpretation (VP NP)
zero or more times, each time reducing the list of constraints C1-C4 by one element,
and producing a new interpretation in S. If sent is called with a goal of the form
"(sent S [1 [] Sent [])."the grammar will backtrack until it finds an
interpretation of sent with an empty set of constraints.

So far no real use of the higher order unification procedure has been made. It is
with the implementation of the discharge-rules that it becomes essential. The
discharge-rules I have implemented have the following form in Pereira’s account.

bind(Q, x,R), I'l=pint, ,o T
T'pint, 0 Ay.QR, Ax.T(y))

bind(Q, x, R), T -p int, S
TI-pinty Q (R, AX.S)

These rules are accompanied by a set of constraints on the variables occurring in the
sequents. For example, in none of these rules may x occur free in I".

The basic idea of the implementation is to use higher order unification to effect the
bindings in the above expressions, and thereby get a grammar that produces
unconditional interpretations from sentences in natural language.

4. Description of the implementation

This section contains a detailed account of the implementation. Many of the methods
used are quite obvious, and are listed merely for the sake of completeness. The
description of the implementation of the discharge-rules together with the discussion of
the problems that appeared contain the main results.

4.1. Types

Lambda Prolog is a typed language. It contains a type-inference system that is very
similar to that of ML. It is not necessary to specify any types at all, but doing so
decreases the possibility that the unification mechanism will go into an infinite
computation. The type specification constitutes an essential part of the program in
another sense as well. In many cases we get more general answers if we do not specify



the types than when we do, and this can be very valuable. As we will see this is
sometimes not quite enough, and we get answers that are still more general than the
ones we would expect. It is quite possible that a more expressive type-system would
solve this problem.

The first set of type-declarations given below are the only ones necessary. All
others are inferred by the system. Iinclude some of these as examples.

type sent % Type of the sentence grammar rule
bool ->
(list bool) -> (list bool) -> (list word) -> (list word) -> o.
type gpred % Type of the gpred discharge rule
(i -> bool) -> (i -> bool) ->
(list bool) -> (list bool) -> (list bool) -> o.
type bind % The type of a left-hand sequent element (a constraint)
((i => bool) -> (i -> bool) -> bool) -> i -> (i -> bool) ->
bool.

The following are inferred:

type det ((i -> bool) -> (i -> bool) -> bool) —> % A determiner
(list bool) -> (list bool) -> (list word) -> (list word) -> o.

o

o

% type noun (i -> bool) -> % Anoun

% (list bool) -> (list bool) =-> (list word) -> (list word) -> o.
% type itv (i -> bool) -> % An intransitive verb

% (1ist bool) -> (list bool) =-> (list word) =-> (list word) -> o.
% type tv (i -> i -> bool) => % A transitive verb

% (list bool) => (list bool)} -> (list word) -> (list word) -> o.
% type rnoun (i -> i -> bool) -> % A relational noun

% (l1ist bool) -> (list bool) =-> (list word) -> (list word) -> o.
% type gprop bool -> bool -> % The qprop discharge rule

oe

(list bool) -> (list bool) -> (list bool) -> o.

4.2 Structural rules

The implementation of the structural rules are pretty straightforward. The result of
applying the interpretation of a verb-phrase on the interpretation of a noun-phrase may
discharge if the list of constraints is nonempty, and the variable-constraints for the
discharge-rule are filled. This is implemented in the predicate gprop. Similarly for
verb-phrases and common nouns with the predicate gpred.



sent S Cl C4 L1l L3 :-
np NP C2 C3 Ll L2,
vp VP C3 C4 L2 L3,
gprop (VP NP) S C2 Cl1 C4.

vp V Cl C2 L1 L2 :-
itv vV C1 C2 L1 LZ2.

vp VP Cl C4 L1 L3 :-
tv Verb C2 C3 L1 L2,
np NP C3 C4 L2 L3,

gpred (Obj \ (Verb Obj NP)) VP C2 Cl C4.

np X [(bind D X N) | Cl1l] C3 L1 L3 :-
det D C1 C2 11 L2,
cn N C2 C3 L2 L3.

cn N Cl C2 L1 L2 :-
noun N Cl1 C2 11 LZ.

cn CN C1 C4 11 L3 :-
rnoun Noun C2 C3 11 L2,
np NP C3 C4 L2 L3,

gpred (Ob3j \ (Noun Obj NP)) CN C2 Cl C4.

4.3. Dictionary

% A sentence

o

May discharge...

o

A verb-phrase

oe

May discharge...

o

A noun-phrase

o

A common noun

oe

May discharge...

The dictionary contains the terminal symbols of the grammar. Each entry gives the
semantics of the given input word. The semantics of a word is in all cases a symbol
representing a function of some type, whereas the input stream is a list of objects of

type "word".
det exists C C [a | L] L.
det iota C C [the | L] L.

det forall C C [every | L] L.

noun dog 1 C C [dog | L] L.
noun child 1 C C [child | 1] L.

rnoun friend 1 C C [friend, of | L] L.

itv sleeps 1 C C [sleeps | L] L.
itv comes 1 C C [comes | L] L.



4.4. The discharge rules

The discharge rule’s first argument is the representation of the input-semantics of the
input-stream. The discharge rule will return a new semantics as its second argument,
and a new list of constraints in accordance with Pereira’s theory.

If the output list is unconstrained, the discharge-rules will produce all
interpretations, given all possible remaining lists of constraints, upon backtracking.

Basis case
Discharge rule for predicates

o

gpred T T Cl1 C1l C2.

gpred (F X) T C1 C3 C4 :-
delete (bind Q X R) Cl C2 C4,
independent X C2 C4, Not implemented (see below)
gpred (Obj \ (O R (X \ ((F X) Obj)))) T C2 C3 C4.

oe

o

gprop S S Cl Cl C2. % Basis case

gprop (F X) S Cl C3 C4 :- s Discharge rule for
delete (bind Q X R) Cl C2 C4, % sentences
independent X C2 C4, % Not implemented

gprop (Q R (X \ (F X))) S C2 C3 C4.

The definitition of delete would be trivial if Lambda prolog had an occurs-check.
As it does not, the current implementation actually implements a simplified occurs-
check on lists.

A problem is the independent predicate which is supposed to guarantee that the
variable X does not occur in the remaining constraints C2-C4. The predicate
independent currently does nothing. For a discussion of this see section 5. For some
examples of how this unsoundness of the implementation effects the answers that are
generated see section 6.

Note however how elegantly the higher order unification handles the lambda-
binding of the free variable x occurring in (F X), where F is unified with the (in a
certain sense) simplest function of x unifiable with the input-semantics. The X
occurring in the recursive call to the discharge rule is of course not the same variable x
but a new lambda bound variable. In gpred, (F X) is applied to another new lambda-
bound variable Ob 5.



5. Some problems.

A real problem (as Pereira also suggests in his paper) seems to be the handling of the
variable constraints in the discharge rules. Some of the constraints are handled
automatically by the higher order unification in a very natural way. But when it is not
(the case where the variable which we are abstracting over may not occur in the rest of
the constraints), there seems to be no simple way to express constraints of this kind
even in the theoretically very powerful syntax of Lambda Prolog. We can not traverse
the data structure representing the functions, as the higher order unification handles
these as real functions and a recursion over such a structure is not guaranteed to
terminate. The same problem would appear in an implementation of the capture rules,
where the variable constraints are even more complex.

Pereira suggests that the work of Harper, Honsell and Plotkin [6] may give us a
way to formulate a logic in which such variable constraints are not needed. This may
be a way of doing in LF, but in my case, this would amount to implementing a subset
of LF in lambda prolog, and in doing this I would encounter exactly the same types of
problems as the ones I was trying to avoid. An other alternative would be to study
alternative and more expressive type systems for incorporation into the logic
programming framework. This may provide the expressiveness we obviously lack
here.

We could also get around the problem with a quite dirty hack if Lambda Prolog had
an occurs-check. Considering the complexity of the unification problem in these kind
of theories, the cost of an occurs-check should not be prohibitive.

6. Examples.
6.1. The semantics of a simple sentence.
?- % —-—-— Enter: --——-

sent Sem [] [] [the, dog, sleepsl [].
Sem = iota dog 1 X \ (sleeps 1 (Var50 X))

The remaining flexible - flexible pairs:
<Var42 , Var50 vVardz>

The desired result is actually the function: (iota dog 1 (X \ (sleeps 1 X))).
Instead we get the more complicated answer above under the the constraint that the
function variable Var50 is unifiable with a function that returns its first argument as a
value. This seemingly unnecessary generality is derived from Huet’s higher order



unification procedure, and ultimately from the undecidibility of higher order unification.
This comment applies to all the examples below as well.

6.1. The semantics of a common noun.

P

o

-——— Enter: --—--
cn Sem [] [] [friend, of, every, child] [].

Sem = Obj \ (forall child 1 X \ (friend 1 Obj (Var59 X Obj)))

The remaining flexible - flexible pairs:
<vVar63 \ (vVar59 Vvarl5 var63) , Var95 \ varl5>

This is a more complicated constraint on the function variable var59. It does seem
intuitively correct however.

6.3. A more complex sentence with alternative scopings produced
on backtracking.

P

o

-——- Enter: --—--

sent Sem [] [] [a, friend, of, every, child, comes] [].

Sem = forall child 1 X \ (exists Varl42 \ (friend 1 Varl42 (Varl35 X
Varld2)) W2 \ (comes 1 (Varl40 X W2)))

The remaining flexible - flexible pairs:
<Varl39 \ (Varl35 Vvar36 varl3%) , Obj \ Var3é>
<Var83 , Varl40 Var36 Var83>
—=—=-=- Enter: ----

o

Sem = exists Var283 \ (friend 1 var283 Vvar36) X \ (forall Var304 \
(child 1 var304) W2 \ (comes 1 (Var302 X W2)))

The remaining flexible -~ flexible pairs:
<Var288 , Var302 Var288 var36>

Note how the unsoundness of the implementation of the discharge rules here
produces an incorrect result. The Variable Var36 is free in the above expression. This
is exactly the case that the variable constraint is supposed to exclude.



Sem = exists Obj \ (forall child 1 X \ (friend 1 Obj (Var455 X Ob3j)))
var530 \ (comes_ 1 (Var529 var530))

The remaining flexible - flexible pairs:
<vVar52l , Var529 Var521>
<Var459 \ (Var455 var36 var459) , Vvar507 \ Var36>

no

6 Conclusions

Although some important problems remain to be solved, the success so far of such a
simple and straightforward implementation of Pereira’s ideas seems very promising. If
we could either state the discharge-rules in a logic in which the variable constraints were
simpler, or find a way to cleanly express the constraints in Lambda Prolog, we would
have the basis of a very powerful system indeed. The interpretation produced is a
clearcut representation of Montague Semantics, and the result is available to a reasoning
system in a well-defined (though very complex) logical language. It would be very
interesting to investigate how a somewhat more complete system would perform on the
kind of problems where Montague Semantics really excels, e.g. epistemic and intentional
constructs in natural language.



[1]

[2]

(3]

(4]

[5]

(6]

References

Fernando C. N. Pereira. Towards a Deductive Theory of Sentence Interpretation.

Miller D. A. &
Nadathur G.

Huet. G. P.

Nadathur G.

Miller D. A. &
Nadathur G.

Harper R. &
Honsell F. &
Plotkin G.

Proceedings of "Recent Developments and Applications
of Natural Language Understanding" seminar in London
December 87.

Higher-Order Logic Programming.
Proceedings of the Third International Logic
Programming Conference, Imperial Collage,
London, England, July 1986.

A unification algorithm for typed Acalculus.
Theoretical computer science I (1975) 27-37.

A Higher-Order Logic as the Basis for Logic
Programming.

Ph.D. Dissertation, University of Pennsylvanina,
May 87.

Some uses of Higher-Order Logic in Computational
Linguistics.
Proceedings of the 24th Annual meeting of the
association for Computational Linguistics,

1986, 247 - 255.

A framework for defining Logics.

In Proceedings of the Second Symposium on Logic in
Computer Science, Cornell University, IEEE, Ithaca,
New York, 1987

10





