ISRN SICS-R--92/01--SE

A Host Interface to the DTM Network

Bengt Ahlgren Stephen Pink Per Lindgren
Lars Hakansson Per Gunningberg Lotten Elmstedt
Christer Bohm Mats Bjorkman

SICS research report
R92:01
ISSN 0283-3638

A Host Interface to the DTM Network”

Bengt Ahlgrent Stephen Pink! Per Lindgren?
Lars Hakansson! Per Gunningberg! Lotten Elmstedt
Christer Bohm? Mats Bjorkman®

SICS research report R92:01

tSwedish Institute of Computer Science,
Box 1263, S-164 28 Kista, Sweden

*Dept. of Telecommunication and Computer Systems,
Royal Institute of Technology, S-164 40 Kista, Sweden

$Dept. of Computer Systems, Uppsala University,
Box 520, S-751 20 Uppsala, Sweden

December 5, 1991

Abstract

DTM, dynamic synchronous transfer mode, is a new time division
multiplexing technique for fiber networks currently being developed
and implemented at the Royal Institute of Technology in Stockholm,
Sweden. This paper describes the hardware and software aspects of
the design of an SBus host interface to the DTM network for a Sun
SPARCstation.

The interface is based on a dual port memory residing on the inter-
face card and accessible over the SBus from the host cPU. The host
operating system allocates message buffers directly in this memory.
The interface has hardware support for segmenting and reassembling
packets to and from the data units of the pTM. The software part
of the interface manages the shared memory and the virtual circuits
provided by the DTM network.

*Also appearing in the Proceedings of the 3rd MultiG Workshop, KTH, Stockholm,
December 17, 1991.

1 Introduction

Dynamic synchronous transfer mode, DTM?, is a novel access method for high
speed fiber networks. It is a TDM technique with similarities to both ATM and
STM, but tries to avoid their respective drawbacks. It supports flexible and
dynamic bandwidth reallocation, but avoids the overhead associated with
the cells and cell headers of ATM.

DTM is being developed and implemented by a group of people at the
Department of Telecommunication and Computer Systems at the Royal In-
stitute of Technology, Stockholm, Sweden [5]. The DTM group together with a
group at the Swedish Institute of Computer Science, SICS, is designing a host
interface for the network. The joint group has decided to design the inter-
face for the Sun SPARCstation and its SBus. This choice was made because
of the relative simplicity of the SBus, and because our present equipment
mainly consists of Suns.

This work is a part of the MultiG research program [7, 6] in Sweden.
MultiG is a collaborative program for research in the area of multimedia
applications and high speed networks. The program contains many projects
ranging from optical fiber interfaces to distributed virtual world applications
and applications using digital audio and video.

2 The DTM medium access method

The DTM is a medium access method offering virtual circuits with guaranteed
bandwidth. It is basically a TDM scheme but with the ability to dynamically
allocate and reallocate bandwidth between different hosts and connections.
Circuit switching makes it possible to do all time consuming work at connec-
tion setup. The data transfer phase is simple and implemented in hardware.

The rest of this section gives an overview of the DTM. An article by
Pehrson et al. [5] describes DTM in more detail.

2.1 Concepts

The optical fiber network is organized as a dual fiber bus. Each node on
the network is attached to both of the unidirectional fibers, which in the
prototype have data rates of 622.08 Mbit/s.

The TDM scheme (see Figure 1) has cycles of 125 us length. Each cycle
is filled with 64-bit slots. With the bit rate of the prototype, there is room
for about 1200 slots in each cycle.

Bandwidth allocation is done on a slot position basis. If, for example,
slots number 7 and 8 are allocated, these slots in all following cycles belong
to the allocation (until changed). The slots of an allocation form a virtual

IpTM was previously called PTM—programmable synchronous transfer mode.

n 125us n+1
time (s) : : s
eycles | 1 | 2
slots [1 | 2
bits {0123... ...63]

Figure 1: DTM TDM scheme.

circuit, or connection, with 64-bit data units. The number of slots per cycle
in the allocation determines the bandwidth of the connection. The least
bandwidth that can be allocated is thus a single slot per cycle or 512,000
bits/s.

A small amount of the slots in each cycle are called static slots. They
are preallocated, one for each node on the fiber bus, and are used for control
signalling such as establishing and releasing connections. The rest of the
slots are called dynamic slots and are used for transfer of data.

2.2 Hardware overview

Figure 2 shows the hardware architecture of the DTM prototype currently
being developed. The two fibers are attached to the fiber access units. The
units first convert from optical to electrical signals and then from serial to
64 bit parallel signals. They are the only parts that need to operate at the
full fiber frequency.

The 64 bit parallel stream is fed into the DTM state machine. The state
machine has a table for selecting slots that are destined for the node. The
selected slots are written over the internal bus to a unit indicated by the table.
The units attached to the internal bus are the host computer interface and
the DTM node controller. The design allows more units on the internal bus.
For instance, more fiber access units can be attached to facilitate switching
between different fiber buses.

The DTM node controller is a processor that handles all protocol control
signalling for setting up and releasing connections. It also programs the
tables of the state machines in order to make the data flow to and from the
fiber in the desired manner for the different connections. After a connection
has been set up, the node controller is not involved in transferring the data
stream. Instead, the state machine directly transfers the data between the
host interface and the fiber over the internal bus.

3]

interface

DTM node - ternal |
controller DTM internal bus

DTM state DTM state
machine machine
Fiber Fiber
access unit) access unit
— J
fiber bus L
—

Figure 2: DTM prototype hardware architecture.

2.3 Service

The DTM service is connection oriented with a simplex or full duplex syn-
chronous data channel. The service provides guaranteed bandwidth with
separate and possibly different allocation for each direction. There is also
support for changing the bandwidth allocation on an open connection. The
service has three distinct phases: connection establishment, data transfer
and connection release.

The connection establishment phase (see Figure 3a) has the following
primitives:

o DTM-Connect.request: Issued by the service user to request the estab-
lishment of a new connection.

e DTM-Connect.indication: Issued by the service provider to indicate a
new incoming connection.

o DTM-Status.indication: Issued by the service provider to a service user
that previously requested a connection to indicate that connection es-
tablishment is in progress.

e DTM-Connect.confirm: Issued by the service provider to indicate that
the connection is established.

The DTM-Status.indication is an indication which the service provider returns
immediately to a user that requested a connection. The indication says that
the requested bandwidth is available from the local side of the connection.

Connect.request
Slot.indication

Status.indication

\ \ Slot.response
/ Connect.indication \ \

Connect.confirm

Data.indication

a) Connection establishment b) Data transfer

Disconnect.request

T~

Disconnect.indication

c¢) Connection release

Figure 3: DTM service.

The service user has the option at this stage to begin the transfer of data
without waiting for DTM-Connect.confirm. The connection can, however, still

be rejected by the remote side.
The data transfer phase (see Figure 3b) has the following primitives:

o DTM-Slot.indication: Issued by the service provider to indicate that the
service user should provide data for the next slot.

e DTM-Slot.response: Issued by the service user in response to DTM-
Slot.indication supplying data for the next slot.

e DTM-Data.indication: Issued by the service provider when a slot is
received.

The connection release phase (see Figure 3¢) has the following primitives:

e DTM-Disconnect.request: Issued by the service user to release the con-
nection.

e DTM-Disconnect.indication: Issued by the service provider to indicate
that the connection has been released.

The service also has primitives for changing the allocated bandwidth. See
the service specification for more details [3].

3 SBus characteristics

The SBus [8] is a chip-level interconnect bus between components such as
processors and memory in systems based on microprocessors. It has a maxi-
mum clock frequency of 25 MHz, and a 32 or 64 bit data path. Data transfers
are supported in sizes of 1, 2, 4, 8, 16, 32 and 64 bytes. The 8 byte and larger
transfers are burst transfers which use several clock cycles in succession for
transferring the data. The peak transfer rate in a burst is 100 MB/s for the
32 bit data path and the double for the 64 bit data path. The maximum
sustained transfer rate is 80 MB/s for the 32 bit data path.

The SPARCstation 1 runs its SBus at 20 MHz clock frequency and its
largest burst transfer size is only 16 bytes. The maximum sustained transfer
rate is about 29 MB/s when the CPU is the bus master, and about 25 MB/s
for other masters (which require a virtual address translation cycle before
the data transfer).

The SPARCstation 2 also runs its SBus at 20 MHz, but can do full 64
byte burst transfers. According to some memory bandwidth benchmarks
posted to the Usenet newsgroup comp.benchmarks by John D. McCalpin at
University of Delaware, USA, it can do sustained transfers at about 60 MB/s.

4 Host interface design

The DTM host/network interface is a so called “slave only” SBus device. It
looks like ordinary memory to the host system. Slave only means that the
device does not itself initiate the transfer of data between the device and
other devices connected to the SBus. Another device acting as a bus master,
e.g., the CPU, is needed to transfer data. The host interface does, however,
have the capability to interrupt the host cPU. We call this design a “non-
DMA” design because DMA is not used to transfer data from the interface
over the SBus to the main memory.

We choose the non-DMA design since we believe that it has better per-
formance than a design with DMA would have. In the UNIX networking
architecture it is hard, if not impossible, to avoid one copy of data from the
kernel buffers to the user process address space. If we allocate the kernel
buffers in the memory on the interface card, this copy can be made directly
(by the cPU) from the interface to the user address space. This makes the
data traverse the SBus twice (see Figure 4a).

With this design, the maximum throughput will be limited to half the
memory bandwidth of the system. The memory bandwidth of the SPARC-
station 2 is about 60 MB/s, which means that the limit on this machine is
30 MB/s, or 240 Mbit/s.

In the alternative design with DMA over the SBus the data would traverse
the SBus one additional time in the DMA operation giving a total of three

CPU CPU
| SBus T2 sBus
l—a & l[—o 2l
Network Main Network Main
interface memory interface memory
a) Host interface using dual port memory b) Host interface using DMaA

Figure 4: Host interface design.

DTM

internal SBus
bus SAR Dual
protocol bl:l(l)‘il";
memory
Control —Jd

logic
—__ Control

registers

Figure 5: Host interface hardware architecture.

traversals (see Figure 4b). With this design, the maximum throughput would
be limited to one third of the system memory bandwidth.

Another reason for not choosing DMA is that the DMA controller avail-
able for the SBus, the L64853A DMA-+ controller from LSI LOGIC, has a
throughput of only 8 MB/s, which is less than half of the transfer rate of the
SPARCstation 1 CPU.

4.1 Hardware architecture

Figure 5 shows the main components of the DTM host interface hardware.
It is connected to the DTM internal bus (see Figure 2), which allows writing
and reading of data to and from the fiber and the DTM node controller. The
interface implements two simple protocols in hardware which are described
in the following two sections. The protocols are needed for converting the
64-bit synchronous slot stream of the raw DTM to larger asynchronous data
units suitable for the host to handle. The parts of the device visible to the
host are control registers and a 4 MB dual port memory for I/O buffers.

For more information about the interface hardware design, see the DTM
SBus hardware interface specification [2].

Control Data

.,
1
I

SAR

Slot-stuffing

DTM

Figure 6: Host interface protocol architecture.

4.2 Segmentation and reassembly

The DTM service provides a synchronous data channel with 64-bit data units.
These units are too small for the host computer to process efficiently. The
purpose of our segmentation and reassembly, or SAR, protocol is to convert
the synchronous 64-bit service to larger asynchronous data units. The SAR
service data unit is a multiple of 64 bits with an unlimited maximum size.
Neither the DTM nor the SAR, in their present form in the prototype imple-
mentation, apply any form of error detection to the data stream. If error
detection is desired, it must be taken care of by higher protocol layers.

The SAR protocol is applied to the data transfer part of the DTM service
described above in Section 2.3. The DTM service is first enhanced with the
slot-stuffing protocol described in the next section, but this does not change
the service primitives other than to add the two control flags end-of-frame
and 7dle. In the protocol architecture the other DTM primitives are remapped,
without any processing, to SAR primitives with identical functionality. The
SAR service has two primitives for data transfer:

e SAR-Data.request: Issued by the SAR user to request the transfer of a
data unit.

e SAR-Data.indication: Issued by the provider to indicate that a data unit
has arrived.

Figure 6 illustrates the protocol architecture of the host interface and the
relationship between the SAR protocol and the other protocols.

The SAR protocol is straightforward. On the sending side, whenever the
synchronous indication that a slot is to be sent is sensed from below, a
response is issued with 64 bits of data. If there is no data to send, that is,
no SAR-Data.request has been received from the service user, the idle control
flag is set in the response. If the slot was the last slot of a data unit, the
end-of-frame control flag is set.

On the receiving side, the protocol discards slots with the idle control
flag set and puts the data from other slots in a buffer. When a slot with the
end-of-frame flag set is received, a SAR-Data.indication primitive is issued.

The details of the SAR protocol can be found in its specification [4].

4.3 Slot-stuffing

To be able to implement the segmentation and reassembly protocol, two
control flags are needed for every DTM data slot: one for indicating end-of-
frame, and one for indicating an empty or idle slot. These flags are provided
by a simple protocol which we call the slot-stuffing protocol. Note that this
protocol is only applied to the data transfer part of the DTM service (see also
Figure 6).

The end-of-frame and idle control flags are implemented by control slots
in the data stream. The slot-stuffing protocol uses a technique similar to the
bit-stuffing in HDLC to allow user data to contain the same bit patterns as
the control slots.

When the user has set one or both of the control flags, a control slot con-
taining the flags is sent before the slot containing the data segment. Should
a user data segment have the same bit pattern as a control slot, an escape
control slot is inserted before the user data segment slot, telling the receiver
that the next slot should be interpreted strictly as user data.

The details of the slot-stuffing protocol can be found in its specifica-
tion [1].

4.4 Software interfacing

The host computer system needs software to be able to use the DTM host
interface. This software is incorporated in the host operating system in the
form of a device driver. We will develop the driver for Sun’s operating system
SunOS, and later also adapt it to the coming Berkeley Unix 4.4 BSD.

The device driver for the DTM interface is different from most network
drivers in one respect: it handles connections. The connections are identified
by using different device units, even though there is really only one device.
A device unit is normally used to identify multiple identical devices attached
to the same bus or controller and that is serviced by the same device driver.

The SunOS operating system kernel has a standard set of entry points to
device drivers, which for the DTM are listed in Table 1. The management of
DTM connections is done through the dtmioctl() routine.

The dtmattach() routine is responsible for setting up the kernel virtual
memory maps so that the interface memory can be accessed. The interface
buffer areas in the dual port memory are mapped cacheable, but the control
registers are mapped non-cacheable. It is important that the accesses from
the CPU to the buffer areas are cached, because the cache controller generates

dtmidentify() | identifies the device to the system during auto
configuration.

dtmattach() makes the device available and known to the
system.

dtminit () makes the device ready for operation.

dtmreset () resets the device to a known state.

dtmintr() device interrupt service routine called when
new data arrives and when some special event
happens.

dtmioctl() performs I/O-controls on the device, that is,
device specific control operations.

dtmoutput O initiates output on the device.

Table 1: The DTM device driver entry points.

burst transfers on the SBus when it is filling the cache. This results in
considerably higher throughput. Since the buffer memory has dual ports,
the driver must be careful to invalidate the cache at the right times. The
control registers, on the other hand, should not be cached, because burst
transfers cause several adjacent registers to be written together at the same
time.

The driver allocates message buffers, called mbufs, in the dual port mem-
ory on the interface card. When data arrives from the network, it is written
by the hardware directly in the already allocated mbuf. The interface in-
terrupts the host system in two cases: when the mbuf is full and when an
end-of-frame indication was received. The kernel then calls the dtmintr()
routine in the driver which provides a new mbuf to the interface and queues
the full mbuf for the higher level protocols. All higher layer protocol pro-
cessing can then be done by the kernel without moving the data. The data
is then eventually copied to the address space of a user process in the main
memory of the system.

A socket interface will be designed for the raw DTM service for use by ap-
plication programs. This interface is useful both for debugging and for exper-
imenting with applications needing guaranteed bandwidth, but not complete
reliability. A new address family will be introduced for this socket interface,
and possibly also a new socket type.

References

[1] Mats Bjérkman. DTM slot-stuffing specification. Technical report,
Swedish Institute of Computer Science (SICS), Box 1263, 5-164 28 Kista,

Sweden, November 1991. First draft.

Christer Bohm, Bengt Ahlgren, and Per Lindgren. DTM SBus inter-
face specification. Technical report, Dept. of Telecommunication and
Computer Systems, Royal Institute of Technology, S-164 40 Stockholm,
Sweden, November 1991. First draft.

Lotten Elmstedt, Per Gunningberg, and Lars Hakansson. DTM service
specification. Technical report, Dept. of Telecommunication and Com-
puter Systems, Royal Institute of Technology, S-164 40 Kista, Sweden,
November 1991. First draft.

Per Gunningberg, Mats Bjérkman, and Lotten Elmstedt. DTM SAR
service and protocol specification. Technical report, Swedish Institute of
Computer Science (SICS), Box 1263, S-164 28 Kista, Sweden, November
1991. First draft.

B. Pehrson, F. Reichert, P. Lindgren, C. Bohm, L. Hakansson, L. Elm-
stedt, P. von Knorring, and L. Gauffin. The design of the MultiG dual
fiber network. In Proceedings of the 2nd Mult:G Workshop, pages 93-107,
Electrum, Stockholm-Kista, Sweden, June 17, 1991.

Bj6rn Pehrson, Per Gunningberg, and Stephen Pink. MultiG—A research
program on distributed multimedia applications and gigabit networks.
IEEFE Networks Magazine, 6, January 1992.

Bjorn Pehrson and Stephen Pink. Multimedia and high speed networking
in MultiG. Computer Networks and ISDN Systems, 21(4):315-319, June
1991.

Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043,
USA. SBus Specification B.0, Revision A of December 1990. Part number
800-5922-10.

10

