Change search
Refine search result
1 - 22 of 22
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergvall, Niklas
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Molinder, Roger
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Johansson, Ann-Christine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Sandström, Linda
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Continuous Slurry Hydrocracking of Biobased Fast Pyrolysis Oil2021In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 35, no 3, p. 2303-2312Article in journal (Refereed)
    Abstract [en]

    Co-refining of fast pyrolysis bio-oil together with fossil oil in existing refinery infrastructure is an attractive and cost-efficient route to conversion of lignocellulosic biomass to transportation fuel. However, due to large differences in properties between the two oils, special notice is needed to reduce process-related issues. Here, fast pyrolysis bio-oil produced from lignocellulosic biomass was co-refined with vacuum gas oil at a 20:80 weight ratio in continuous operation in a pilot-scale slurry hydrocracker in order to investigate the impact of process parameters on product quality and process performance. Mass balances together with product characterization were used to investigate product yields, product composition, and hydrodeoxygenation. Best conversion and hydrodeoxygenation of the fast pyrolysis bio-oil was achieved using an unsupported catalyst loading of 900 ppm Mo with either a low temperature (410 °C) and long residence time (2 h) or higher temperature (435 °C) and shorter residence time (1 h). These settings resulted in about 94% hydrodeoxygenation but also led to highest yield of biogenic carbon to gas phase (40-43 wt %) and lowest yield of biogenic carbon to oil fractions (53-56 wt %) as well as the water fraction (3-5 wt %). Successfully, coke yield remained low at around 0.07-0.10 wt % for all performed runs, which was comparable to the insoluble particle content in the feed due to the presence of particles in the untreated fast pyrolysis bio-oil. Co-processing pyrolysis oil with fossil oil in a slurry hydrocracker seems to be a robust process with regard to coke formation, which should lead to reduced plugging issues compared to fixed bed hydrotreaters. Although this study gives a brief understanding of the effect of process parameters on the processing of fast pyrolysis bio-oil, further research is required to find optimal process parameters and to fully comprehend the possibilities and limitations for production of transportation fuels from fast pyrolysis bio-oil using this technology.

  • 2.
    Dimitriadis, Athanasios
    et al.
    CPERI & CERTH, Greece.
    Bergvall, Niklas
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Johansson, Ann-Christine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Sandström, Linda
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Bezergianni, Stella
    CPERI & CERTH, Greece.
    Tourlakidis, Nikos
    CPERI & CERTH, Greece.
    Meca, Ludek
    Ranido sro, Czech Republic.
    Kukula, Pavel
    Ranido sro, Czech Republic.
    Raymakers, Leonard
    HyET Hydrogen BV, Netherlands.
    Biomass conversion via ablative fast pyrolysis and hydroprocessing towards refinery integration: Industrially relevant scale validation2023In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 332, article id 126153Article in journal (Refereed)
    Abstract [en]

    Reducing the use of fossil fuels is an ongoing and important effort considering the environmental impact and depletion of fossil-based resources. The combination of ablative fast pyrolysis and hydroprocessing is explored as a pathway allowing bio-based intermediates (BioMates) integration in underlying petroleum refineries. The proposed technology is validated in industrially relevant scale, identifying pros and cons towards its commercialization. Straw from wheat, rye and barley was fed to ablative fast pyrolysis rendering Fast Pyrolysis Bio-Oil (FPBO) as the main product. The FPBO was stabilized via slurry hydroprocessing, rendering a stabilized FPBO (sFPBO) with 49 % reduced oxygen content, 71 % reduced carbonyl content and 49 % reduced Conradson carbon residue. Fixed bed catalytic hydroprocessing of sFPBO resulted in the production of BioMates, a high bio-content product to be co-fed in established refinery units. Compared to the starting biomass, BioMates has 83.6 wt% C content increase, 92.5 wt% O content decrease, 93.0 wt% water content decrease, while the overall technology has 20 wt% conversion yield (32 wt% carbon yield) from biomass to BioMates. © 2022 The Author(s)

  • 3.
    Gebart, Bo Rikard
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Wiinikka, Henrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Marklund, Magnus
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Carlsson, Per
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Grönberg, C.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Weiland, Fredrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Johansson, Ann-Christine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Öhrman, Olov
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Recent advances in the understanding of pressurized black liquor gasification.2011In: Cellulose Chemistry and Technology, Vol. 45, p. 521-526Article in journal (Refereed)
  • 4.
    Iisa, Kristiina
    et al.
    National Renewable Energy Laboratory, USA.
    Johansson, Ann-Christine
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Pettersson, Esbjörn
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    French, Richard
    National Renewable Energy Laboratory, USA.
    Orton, Kellene
    National Renewable Energy Laboratory, USA.
    Wiinikka, Henrik
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Chemical and physical characterization of aerosols from fast pyrolysis of biomass2019In: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 142, article id 104606Article in journal (Refereed)
    Abstract [en]

    Biomass fast pyrolysis vapors contain a significant quantity of persistent aerosols, which can impact downstream processing by e.g. fouling of surfaces and deposition on downstream catalysts. In this study, aerosol concentrations and size distributions were measured by an impactor in two pyrolysis systems, a bench-scale fluidized-bed pyrolyzer and a pilot-scale cyclone pyrolyzer. In both units, the mass-based mode aerosol diameter was approximately 1 μm before aerosol collection devices in cooled vapors of 300–370 K but the number-based median was < 0.1 μm. Aerosols < 1 μm were formed and aerosols > 1 μm deposited during cooling of pyrolysis vapors from 620 to 370 K in the fluidized-bed pyrolysis system. The oil fraction collected from the aerosols constituted approximately 40 wt% of the total oils collected in both systems. Compared to the total collected oil, the oil fraction from the aerosols was enriched in lignin-derived components and anhydrosugars and had lower concentrations of low molecular weight cellulose derived oxygenates, such as hydroxyketones. 

  • 5.
    Johansson, Ann-Christine
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Bergvall, Niklas
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Molinder, Roger
    RISE Research Institutes of Sweden.
    Wikberg, Elena
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Niinipuu, Mirva
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Sandström, Linda
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Comparison of co-refining of fast pyrolysis oil from Salix via catalytic cracking and hydroprocessing2023In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 172, article id 106753Article in journal (Refereed)
    Abstract [en]

    Lignocellulosic biomass from energy crops, i.e., short rotation coppice willows such as Salix spp., can be used as feedstock for production of transportation biofuels. Biomass conversion via fast pyrolysis followed by co-refining with fossil oil in existing refinery infrastructure could enable a fast introduction of large-scale production of biofuels. In this study, Salix was first liquefied using ablative fast pyrolysis in a pilot scale unit. The resulting pyrolysis oil, rich in oxygenates, was thereafter co-refined in 20 wt% ratio with fossil feedstock using two separate technologies, a fluidized catalytic cracking (FCC) laboratory unit and a continuous slurry hydroprocessing pilot plant. In the FCC route, the pyrolysis oil was cracked at 798 K using a commercial FCC catalyst at atmospheric pressure, while in the hydroprocessing route, the oil was processed at 693 K and a hydrogen pressure of 15 MPa in the presence of an unsupported molybdenum sulfide catalyst. Both routes resulted in significant deoxygenation (97 wt% versus 93 wt%). It is feasible to co-refine pyrolysis oil using both methods, the main difference being that the hydroprocessing results in a significantly higher biogenic carbon yield from the pyrolysis oil to liquid and gaseous hydrocarbon products (92 wt%) but would in turn require input of H2. In the cracking route, besides the liquid product, a significant part of the biogenic carbon ends up as gas and as coke on the catalyst. The choice of route depends, among other factors, on the available amount of bio-oil and refining infrastructures. © 2023 The Authors

  • 6.
    Johansson, Ann-Christine
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Iisa, Kristiina
    National Renewable Energy Laboratory, USA.
    Sandström, Linda
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Ben, Haoxi
    National Renewable Energy Laboratory, USA.
    Pilath, Heidi
    National Renewable Energy Laboratory, USA.
    Deutch, Steve
    National Renewable Energy Laboratory, USA.
    Wiinikka, Henrik
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Öhrman, Olov G.W.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis2017In: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 123, p. 244-254Article in journal (Refereed)
    Abstract [en]

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. The objective was to characterize the oil fractions produced from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC − TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. However, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. This promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle fractions, and extraction of acids and aldehydes in the later fractions.

  • 7.
    Johansson, Ann-Christine
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Molinder, Roger
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Vikström, Therese
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Wiinikka, Henrik
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Particle formation during suspension combustion of different biomass powders and their fast pyrolysis bio-oils and biochars2021In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 218, article id 106868Article in journal (Refereed)
    Abstract [en]

    The fly ash formation during suspension combustion of five different biomass powders (stem wood, bark, forest residue, willow, and reed canary grass) and the corresponding products from fast pyrolysis (bio-oil and biochar) of the powders was investigated. The fifteen fuels were burned in a drop tube furnace under normal (20 vol-% O2) and oxygen-enriched combustion conditions (40 vol-% and 60 vol-% O2). The trends in the data were used to discuss differences in combustion behavior and devise recommendations for the use of the fuels. There was a general difference in fly ash formation mechanism between the solid fuels (biomass and biochar) and the bio-oil fuels, which was attributed to parts of the ash-forming elements in bio-oil being dissolved in the oil. Oxygen-enrichment did not affect the release of inorganic elements to the gas phase for bio-oil combustion. Since the bio-oils generate lower fly ash during combustion, ~100 times compared to the original biomasses, they should be reserved for combustion technologies demanding fuels with very low ash content, whereas the biochar should be used in large scale combustion facilities with advanced gas cleaning technology operated by teams with experience of handling ash related operational problems. © 2021 The Author(s)

  • 8.
    Johansson, Ann-Christine
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Sandström, Linda
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Wiinikka, Henrik
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Öhrman, Olov G.W.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Experiences of pilot scale cyclone pyrolysis2017In: European Biomass Conf. Exhib. Proc., ETA-Florence Renewable Energies , 2017, no 25thEUBCE, p. 952-955Conference paper (Refereed)
    Abstract [en]

    Fast pyrolysis is a promising thermochemical technology for converting biomass to energy, chemicals, and fuels. At RISE ETC, an industrially relevant pyrolysis pilot plant has been designed, constructed, and operated since 2011. The pilot plant is based on an externally heated cyclone reactor where both the pyrolysis reaction and the separation of products take place. The reactor design has shown to be beneficial since it produces oil with relatively low concentrations of inorganics. Pyrolysis of different Nordic biomasses, both forestry and agricultural, have been studied using the pilot plant and the results indicate that it is especially suitable for low grade fuels. The oil is collected in two separate steps, and the received two oil fractions have different chemical and physical properties, which opens up the possibility to use selected fractions in targeted applications. Oil fractionation has also been studied further in a separate fractional condensation system and the results show that it is possible to separate larger energy-rich lignin-derived material; medium-sized; and light water soluble compounds already in the oil collection step. The pilot plant has worked as a platform for pyrolysis research and for building up competence in the pyrolysis area. 

  • 9.
    Johansson, Ann-Christine
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Sandström, Linda
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Öhrman, Olov
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center. Luleå University of Technology, Sweden.
    Jilvero, Henrik
    Stena Metall, Sweden.
    Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale2018In: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 134, p. 102-1113Article in journal (Refereed)
    Abstract [en]

    Earlier studies show that co-pyrolysis of biomass and plastics can improve the quantity and quality of the produced pyrolysis oil compared to pyrolysis of the separate feedstocks. In this work three relevant plastic wastes; paper reject, shredder light fraction and cable plastics; were evaluated together with woody biomass (stem wood from spruce and pine) using analytical pyrolysis, Py-GC–MS/FID. One verification experiment was also conducted in a cyclone pyrolyser pilot plant at industrially relevant conditions. The addition of plastic waste to woody biomass pyrolysis was found to significantly affect the composition and properties of the produced pyrolysis products. In analytical pyrolysis experiments, positive synergetic effects were observed in the co-pyrolysis of paper reject and cable plastics together with the stem wood. The yield of reactive oxygenated compounds (ketones, aldehydes and acids) was suppressed while more stable alcohols and esters were promoted. The formation of hydrocarbons was also promoted in the co-pyrolysis of plastics from paper reject and stem wood. The results from the analytical pyrolysis were partly verified in the pilot scale experiment by co-pyrolysing stem wood and paper reject. However, the co-pyrolysis also affected other parameters that cannot be detected in analytical pyrolysis such as higher acidity and viscosity of the oil which highlights the need for undertaking experiments at different scales. The product yields in pilot scale were about the same for the co-pyrolysis case as for pure stem wood. However, a high volatile content of the solid product indicated that the process conditions can be further optimized for co-pyrolysing cases.

  • 10.
    Johansson, Ann-Christine
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Sott, Richard
    RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.
    Mattsson, Cecilia
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Comparative study of thermochemical recycling with solvolysis and pyrolysis of End-of-Life wind turbine blades: Rekovind2 - WP32023Report (Other academic)
    Abstract [en]

    There is an urgent need for the development of viable recycling solutions for the increasing waste streams of glass fiber composites (GFRPs) from all sectors i.e. leisure boats, windmills and building constructions. Two potential recycling methods that can separate and recover both the polymers and the high-quality fibers from these kinds of materials are pyrolysis and solvolysis. In this project recycling of an epoxy-based Endof-Life wind turbine blade was evaluated in lab scale using the two methods. In previous literature the main focus has been on the quality of the fibers but in this project the main focus was to compare the chemical composition of the oil products. The produced oils from solvolysis and pyrolysis have been compared with a multianalysis approach by using elemental analysis, GC-MS, pyro-GC-MS/FID, 2D NMR (HSQC) for gaining more information about the chemical structure of the produced monomers (phenols), oligomers and polymers. Almost all the volatile matter in the End-of-Life wind turbine blade was recovered as pyrolysis oil, 36 wt.% yield. The solvolysis oil yield was lower, 17 wt.%, mainly due to a major part of the solvolysis oil ended up in the aqueous solvent. The composition of the oils from both technologies was analyzed based on both their volatile i.e. monomeric and polymeric content. The result point to that both methods produced oils with similar polymeric parts according to NMR and pyro-GC-MS/FID, based on an oxygenated aliphatic network connected with aromatic phenolic structures. Increased information of chemical oil composition will be useful for further processing as raw material in refineries/chemical industries. The monomeric part of the oil produced from pyrolysis was found in relatively large amounts, ~57 wt.%, and can be a future high-value product from recycling of wind turbine blades. The total recovery of phenolics from the pyrolysis was 18 wt.% of the wind turbine blade weight.

    Download full text (pdf)
    fulltext
  • 11.
    Johansson, Ann-Christine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Wiinikka, Henrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Sandström, Linda
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Marklund, Magnus
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Öhrman, Olov G. W.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Narvesjö, Jimmy
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Characterization of pyrolysis products produced from different Nordic biomass types in a cyclone pilot plant2016In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 146, p. 9-19Article in journal (Refereed)
    Abstract [en]

    Pyrolysis is a promising thermochemical technology for converting biomass to energy, chemicals and/or fuels. The objective of the present paper was to characterize fast pyrolysis products and to study pyrolysis oil fractionation. The products were obtained from different Nordic forest and agricultural feedstocks in a pilot scale cyclone pyrolysis plant at three different reactor temperatures. The results show that the main elements (C, H and O) and chemical compositions of the products produced from stem wood, willow, forest residue and reed canary grass are in general terms rather similar, while the products obtained from bark differ to some extent. The oil produced from bark had a higher H/Ceff ratio and heating value which can be correlated to a higher amount of pyrolytic lignin and extractives when compared with oils produced from the other feedstocks. Regardless of the original feedstock, the composition of the different pyrolysis oil fractions (condensed and aerosol) differs significantly from each other. However this opens up the possibility to use specifically selected fractions in targeted applications. An increased reactor temperature generally results in a higher amount of water and water insoluble material, primarily as small lignin derived oligomers, in the produced oil.

    Download full text (pdf)
    fulltext
  • 12.
    Rönnberg-Wästljung, Ann Christin
    et al.
    SLU Swedish University of Agricultural Sciences, Sweden.
    Dufour, Louis
    SLU Swedish University of Agricultural Sciences, Sweden.
    Gao, Jie
    SLU Swedish University of Agricultural Sciences, Sweden.
    Hansson, Per-Anders
    SLU Swedish University of Agricultural Sciences, Sweden.
    Herrmann, Anke
    SLU Swedish University of Agricultural Sciences, Sweden.
    Jebrane, Mohamed
    SLU Swedish University of Agricultural Sciences, Sweden.
    Johansson, Ann-Christine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Kalita, Saurav
    SLU Swedish University of Agricultural Sciences, Sweden.
    Molinder, Roger
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Nordh, Nils-Erik
    SLU Swedish University of Agricultural Sciences, Sweden.
    Ohlsson, Jonas A.
    SLU Swedish University of Agricultural Sciences, Sweden.
    Passoth, Volkmar
    SLU Swedish University of Agricultural Sciences, Sweden.
    Sandgren, Mats
    SLU Swedish University of Agricultural Sciences, Sweden.
    Schnürer, Anna
    SLU Swedish University of Agricultural Sciences, Sweden.
    Shi, Andong
    SLU Swedish University of Agricultural Sciences, Sweden.
    Terziev, Nasko
    SLU Swedish University of Agricultural Sciences, Sweden.
    Daniel, Geoffrey
    SLU Swedish University of Agricultural Sciences, Sweden.
    Weih, Martin
    SLU Swedish University of Agricultural Sciences, Sweden.
    Optimized utilization of Salix : Perspectives for the genetic improvement toward sustainable biofuel value chains2022In: Global Change Biology Bioenergy, ISSN 1757-1693, E-ISSN 1757-1707, Vol. 14, no 10, p. 1128-1144Article in journal (Refereed)
    Abstract [en]

    Abstract Bioenergy will be one of the most important renewable energy sources in the conversion from fossil fuels to bio-based products. Short rotation coppice Salix could be a key player in this conversion since Salix has rapid growth, positive energy balance, easy to manage cultivation system with vegetative propagation of plant material and multiple harvests from the same plantation. The aim of the present paper is to provide an overview of the main challenges and key issues in willow genetic improvement toward sustainable biofuel value chains. Primarily based on results from the research project ?Optimized Utilization of Salix? (OPTUS), the influence of Salix wood quality on the potential for biofuel use is discussed, followed by issues related to the conversion of Salix biomass into liquid and gaseous transportation fuels. Thereafter, the studies address genotypic influence on soil carbon sequestration in Salix plantations, as well as on soil carbon dynamics and climate change impacts. Finally, the opportunities for plant breeding are discussed using willow as a resource for sustainable biofuel production. Substantial phenotypic and genotypic variation was reported for different wood quality traits important in biological (i.e., enzymatic and anaerobic) and thermochemical conversion processes, which is a prerequisite for plant breeding. Furthermore, different Salix genotypes can affect soil carbon sequestration variably, and life cycle assessment illustrates that these differences can result in different climate mitigation potential depending on genotype. Thus, the potential of Salix plantations for sustainable biomass production and its conversion into biofuels is shown. Large genetic variation in various wood and biomass traits, important for different conversion processes and carbon sequestration, provides opportunities to enhance the sustainability of the production system via plant breeding. This includes new breeding targets in addition to traditional targets for high yield to improve biomass quality and carbon sequestration potential.

  • 13.
    Sandström, Linda
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Johansson, Ann-Christine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Wiinikka, Henrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Öhrman, Olov G. W.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Marklund, Magnus
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Pyrolysis of Nordic biomass types in a cyclone pilot plant — Mass balances and yields2016In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 152, p. 274-284Article in journal (Refereed)
    Abstract [en]

    Fast pyrolysis of biomass results in a renewable product usually denoted pyrolysis oil or bio-oil, which has been suggested to be used as a direct substitute for fuel oil or as a feedstock for production of transportation fuels and/or chemicals. In the present work, fast pyrolysis of stem wood (originated from pine and spruce), willow, reed canary grass, brown forest residue and bark has been performed in a pilot scale cyclone reactor. The experiments were based on a biomass feeding rate of 20 kg/h at three different reactor temperatures. At the reference condition, pyrolysis of stem wood, willow, reed canary grass, and forest residue resulted in organic liquid yields in the range of 41 to 45% w/w, while pyrolysis of bark resulted in lower organic liquid yields. Two fractions of pyrolysis oil were obtained, denoted as the condensed and the aerosol fraction. Most of the water soluble molecules were collected in the condensed fraction, whereas the yield of water insoluble, heavy lignin molecules was higher in the aerosol fraction. Based on the results of the present work, willow, reed canary grass and forest residue are considered as promising raw materials for production of pyrolysis oil in a cyclone reactor.

    Download full text (pdf)
    fulltext
  • 14.
    Shafaghat, Hoda
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Gulshan, S
    KTH Royal Institute of Technology, Sweden.
    Johansson, Ann-Christine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Evangelopoulos, Panagiotis
    RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation.
    Yang, W.
    KTH Royal Institute of Technology, Sweden.
    Selective recycling of BTX hydrocarbons from electronic plastic wastes using catalytic fast pyrolysis2022In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 605, article id 154734Article in journal (Refereed)
    Abstract [en]

    Non-catalytic and catalytic pyrolysis of two waste electrical and electronic equipment (WEEE) fractions, with two different copper contents (low- and medium-grade WEEE named as LGE and MGE, respectively), were performed using micro- and lab-scale pyrolyzers. This research aimed to fundamentally study the feasibility of chemical recycling of the WEEE fractions via pyrolysis process considering molecular interactions at the interfaces of catalyst active sites and WEEE pyrolyzates which significantly influence the chemical functionality of surface intermediates and catalysis by reorganizing the pyrolyzates near catalytic active sites forming reactive surface intermediates. Hence, Al2O3, TiO2, HBeta, HZSM-5 and spent FCC catalysts were used in in-situ micro-scale pyrolysis. Results indicated that HBeta and HZSM-5 zeolites were more suitable than other catalysts for selective production of aromatic hydrocarbons and BTX. High acidity and shape selectivity of zeotype surfaces make them attractive frameworks for catalytic pyrolysis processes aiming for light hydrocarbons like BTX. Meanwhile, the ex-situ pyrolysis of LGE and MGE were carried out using HZSM-5 in micro- and lab-scale pyrolyzers to investigate the effect of pyrolysis configuration on the BTX selectivity. Although the ex-situ pyrolysis resulted in higher formation of BTX from LGE, the in-situ configuration was more efficient to produce BTX from MGE. © 2022 The Author(s)

  • 15.
    Shafaghat, Hoda
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Linderberg, Mats
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical Process and Pharmaceutical Development.
    Janosik, Tomasz
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical Process and Pharmaceutical Development.
    Hedberg, Martin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical Process and Pharmaceutical Development.
    Wiinikka, Henrik
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Sandström, Linda
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Johansson, Ann-Christine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Enhanced Biofuel Production via Catalytic Hydropyrolysis and Hydro-Coprocessing2022In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 36, no 1, p. 450-462Article in journal (Refereed)
    Abstract [en]

    In order to successfully integrate biomass pyrolysis oils as starting materials for conventional oil refineries, upgrading of the pyrolysis oils is needed to achieve desired properties, something which can be performed either as part of the pyrolysis process and/or by separate catalytic treatment of the pyrolysis intermediate oil products. In this study, the quality of stem wood-derived pyrolysis oil was improved via ex situ catalytic hydropyrolysis in a bench-scale pyrolyzer (stage 1), followed by catalytic hydro-coprocessing with fossil co-feed in a laboratory-scale high pressure autoclave (stage 2). The effect of pyrolysis upgrading conditions was investigated based on the quality of intermediate products and their suitability for hydro-coprocessing. HZSM-5 and Pt/TiO2 catalysts (400 °C, atmospheric pressure) were employed for ex situ pyrolysis, and the NiMoS/Al2O3 catalyst (330 °C, 100 bar H2 initial pressure) was used for hydro-coprocessing of the pyrolysis oil. The application of HZSM-5 in the pyrolysis of stem wood under a N2 atmosphere decreased the formation of acids, ketones, aldehydes, and furans and increased the production of aromatic hydrocarbons and phenolics (guaiacols and phenols). Replacing HZSM-5 with Pt/TiO2 and N2 with H2 resulted in complete conversion of guaiacols and significant production of phenols, with further indications of increased stability and reduced coking tendencies.

  • 16.
    Sophonrat, Nanta
    et al.
    KTH Royal Institute of Technology, Sweden.
    Sandström, Linda
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Johansson, Ann-Christine
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Yang, Weihong
    KTH Royal Institute of Technology, Sweden.
    Co-pyrolysis of Mixed Plastics and Cellulose: An Interaction Study by Py-GC×GC/MS2017In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 31, no 10, p. 11078-11090Article in journal (Refereed)
    Abstract [en]

    Understanding of the interaction between cellulose and various plastics is crucial for designing waste-to-energy processes. In this work, co-pyrolysis of polystyrene (PS) and cellulose was performed in a Py-GC×GC/MS system at 450-600 °C with ratios 70:30, 50:50, and 30:70. Polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were then added to the mixture with different ratios. It was found that co-pyrolysis of PS and cellulose promotes the formation of aromatic products with a large increase in the yield of ethylbenzene as compared to the calculated value from individual feedstock. This indicates interactions between cellulose and PS pyrolysis products. Observations from experiments including more than one type of plastics indicate that the interactions between different plastics are more pronounced than the interaction between plastics and cellulose.

  • 17.
    Weiland, Fredrik
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Qureshi, Muhammad
    VTT, Finland.
    Wennebro, Jonas
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Lindfors, Christian
    VTT, Finland.
    Ohra-Aho, Taina
    VTT, Finland.
    Shafaghat, Hoda
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Johansson, Ann-Christine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Entrained flow gasification of polypropylene pyrolysis oil2021In: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 26, no 23, article id 7317Article in journal (Refereed)
    Abstract [en]

    Petrochemical products could be produced from circular feedstock, such as waste plastics. Most plants that utilize syngas in their production are today equipped with entrained flow gasifiers, as this type of gasifier generates the highest syngas quality. However, feeding of circular feedstocks to an entrained flow gasifier can be problematic. Therefore, in this work, a two-step process was studied, in which polypropylene was pre-treated by pyrolysis to produce a liquid intermediate that was easily fed to the gasifier. The products from both pyrolysis and gasification were thoroughly characterized. Moreover, the product yields from the individual steps, as well as from the entire process chain, are reported. It was estimated that the yields of CO and H2 from the two-step process were at least 0.95 and 0.06 kg per kg of polypropylene, respectively, assuming that the pyrolysis liquid and wax can be combined as feedstock to an entrained flow gasifier. On an energy basis, the energy content of CO and H2 in the produced syngas corresponded to approximately 40% of the energy content of the polypropylene raw material. This is, however, expected to be significantly improved on a larger scale where losses are proportionally smaller. © 2021 by the authors. 

  • 18.
    Wiinikka, Henrik
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Carlsson, Per
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Johansson, Ann-Christine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Gullberg, Marcus
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Ylipää, Calle
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Lundgren, Mattias
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Sandström, Linda
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Fast pyrolysis of stem wood in a pilot-scale cyclone reactor2015In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 29, no 5, p. 3158-3167Article in journal (Refereed)
    Abstract [en]

    Fast pyrolysis of stem wood was performed in a pilot-scale cyclone reactor with a reactor wall temperature of 750°C. Wood powder was introduced to the pyrolyzer at 20 kg/h during the experiments. Stable operation of the pyrolyzer was easily achieved, and the resulting yields of the products were 54.6 wt % of pyrolysis oil, 15.2 wt % of solid residue, and 20.1 wt % of gases. From the ingoing raw material, 3.4 wt % of the mass could be recovered as deposits, mainly on the walls of the reactor and in the oil condensing part of the plant. The mass and energy balance closures were approximately 93% and 89%, respectively. The physicochemical properties of the pyrolysis oil, solid residue, and noncondensable gas were measured and compared to values in the literature. The results also show that it is possible to produce an oil with a very low concentration of ash-forming elements because particle separation has already occurred in the cyclone reactor. 

  • 19.
    Wiinikka, Henrik
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Johansson, Ann-Christine
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Sandström, Linda
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Öhrman, Olov G.W.
    RISE - Research Institutes of Sweden, Bioeconomy, ETC Energy Technology Center.
    Fate of inorganic elements during fast pyrolysis of biomass in a cyclone reactor2017In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 203, p. 537-547Article in journal (Refereed)
    Abstract [en]

    In order to reduce ash related operational problem and particle emissions during pyrolysis oil combustion it is important to produce pyrolysis oil with very low concentration of inorganics. In this paper, the distribution of all major inorganic elements (S, Si, Al, Ca, Fe, K, Mg, Mn, Na, P, Ti and Zn) in the pyrolysis products (solid residue and two fractions of pyrolysis oil) was investigated during pyrolysis of stem wood, bark, forest residue, salix and reed canary grass. The raw materials were pyrolysed in a cyclone reactor and the produced pyrolysis oils were recovered as two oil fractions, a condensed fraction and an aerosol fraction. The inorganic composition of the ingoing raw material, the solid residue and the two pyrolysis oil fractions were analysed with inductively coupled plasma spectrometry techniques. All major inorganic elements, except sulphur, were concentrated in the solid residue. A significant amount of sulphur was released to the gas phase during pyrolysis. For zinc, potassium and iron about 1–10 wt% of the ingoing amount, depending on the raw material, was found in the pyrolysis oil. For the rest of the inorganics, generally less than 1 wt% of the ingoing amount was found in the pyrolysis oil. There were also differences in distribution of inorganics between the condensed and the aerosol oil fractions. The easily volatilized inorganic elements such as sulphur and potassium were found to a larger extent in the aerosol fraction, whereas the refractory elements were found to a larger extent in the condensed fraction. This implies that oil fractionation can be a method to produce oil fractions with different inorganic concentrations which thereafter can be used in different technical applications depending on their demand on the inorganic composition of the pyrolysis oil.

  • 20.
    Wiinikka, Henrik
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, ETC Energy Technology Center. Luleå University of Technology, Sweden.
    Johansson, Ann-Christine
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, ETC Energy Technology Center.
    Wennebro, Jonas
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, ETC Energy Technology Center.
    Carlsson, P.
    SINTEF Energy Research AS, Norway.
    Öhrman, O
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, ETC Energy Technology Center.
    Evaluation of black liquor gasification intended for synthetic fuel or power production2015In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 139, p. 216-225Article in journal (Refereed)
    Abstract [en]

    The performance of a high-temperature pressurized black liquor gasifier intended for fuel or power production was evaluated both by thermochemical equilibrium calculations and with experiments performed in a development plant with a maximum capacity corresponding to 3 MWth. The aim of this paper was to investigate how the energy efficiency and the performance of the gasifier change with desired use of the syngas and to provide an accurate process analysis which can be used in future work for process optimization and understanding. Experiments in the plant were performed for an oxygen equivalence ratio (λ) between 0.414-0.462 at two system pressures, 24.6 and 28.7 bar, respectively. The thermal load on the gasifier was 2.7 MWth during the experiments. The experimentally verified cold gas efficiency taking into account all gaseous species varied between 59.0-62.4%. However, if only CO and H2 (which are the effective molecules for synthetic fuel production) were taken into account; the cold gas efficiency decreased considerably to 53.7-55.4% due to the presence of CH4 in the gas. The results indicate that optimal performance for synthetic fuel production occurs at a higher λ compared to power production. There is also a potential to further improve the performance for an optimal operated commercial plant in the future since the theoretical results indicate that the cold gas efficiency could be as high as 68.8% (λ = 0.35) for fuel production and 81.7% (λ = 0.27) for power production. 

  • 21.
    Öhrman, Olov G. W.
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Molinder, Roger
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Weiland, Fredrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Johansson, Ann-Christine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Analysis of trace compounds generated by pressurized oxygen blown entrained flow biomass gasification2014In: Environmental Progress and Sustainable Energy, 2014, Vol. 33, p. 699-705, article id 3Conference paper (Refereed)
    Abstract [en]

    Trace compounds were measured in synthesis gas and waste water from a pilot scale pressurized entrained flow oxygen blown biomass gasifier. The feedstock used was milled soft stem wood powder. Gaseous trace compounds were analyzed by gas chromatography. Up to 20 ppm of hydrogen sulfide was observed in the cold synthesis gas and the concentration seemed to be independent of the oxygen equivalence ratio (ER). Benzene varied from 30 to 1100 ppm, strongly depended on the ER and correlated well with the methane concentration. The concentrations of acetylene and ethylene increased as the ER was reduced and could have acted as precursors for the observed soot particles which were characterized using thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. Common polycyclic aromatic hydrocarbons from high temperature biomass gasification such as pyrene, phenanthrene, fluoranthene, and naphthalene were observed in low concentrations in the soot, in the cold synthesis gas and also in the waste water from the quench. Inorganic elements from the feedstock were observed in the waste water. Comparisons were also made with previous results from a black liquor gasifier.

  • 22.
    Öhrman, Olov G.W
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Weiland, Fredrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center. Luleå University of Technology, Sweden.
    Pettersson, Esbjörn
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Johansson, Ann-Christine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Hedman, Henry
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
    Pedersen, Mads
    Biogasol, Denmark.
    Pressurized oxygen blown entrained flow gasification of a biorefinery lignin residue2013In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 115, p. 130-138Article in journal (Refereed)
    Abstract [en]

    Renewable fuels could in the future be produced in a biorefinery which involves highly integrated technologies. It has been reported that thermochemical conversion (gasification) of lignocellulosic biomass has a high potential for end production of renewable biofuels. In this work, lignin residue from biochemical conversion of wheat straw was gasified in an oxygen blown pressurized entrained flow gasifier (PEBG) at 0.25-0.30 MWth, 0.45 < λ < 0.5 and 1 bar (g). A video camera mounted inside the PEBG was used to observe the flame during start up and during operation. Hydrogen (H 2), carbon monoxide (CO) and carbon dioxide (CO2) were the main gas components with H2/CO ratios varying during the gasification test (0.54-0.63). The methane (CH4) concentration also varied slightly and was generally below 1.7% (dry and N2 free). C2-hydrocarbons (< 1810 ppm) and benzene (< 680 ppm) were also observed together with low concentrations of hydrogen sulfide (H2S, < 352 ppm) and carbonyl sulfide (COS, < 131 ppm). The process temperature in the reactor was around 1200 C. The slag seemed to consist of Cristobalite (SiO2) and Berlinite (AlPO4) and Na, Ca, Mg, K and Fe in lower concentrations. Cooling of the burner will be necessary for longer tests to avoid safety shut downs due to high burner temperature. The cold gas efficiency and carbon conversion was estimated but more accurate measurements, especially the syngas flow, needs to be determined during a longer test in order to obtain data on the efficiency at optimized operating conditions. The syngas has potential for further upgrading into biofuels, but will need traditional gas cleaning such as acid gas removal and water gas shifting. Also, higher pressures and reducing the amount of N2 is important in further work.

1 - 22 of 22
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf