Ändra sökning
Avgränsa sökresultatet
1 - 21 av 21
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bjorn, A.
    et al.
    CIRAIG, Canada; Concordia University, Canada.
    Chandrakumar, C.
    New Zealand Life Cycle Management Centre, New Zealand; Massey University, New Zealand.
    Boulay, A. -M
    CIRAIG, Canada.
    Doka, G.
    Doka Life Cycle Assessments, Switzerland.
    Fang, K.
    Zhejiang University, China.
    Gondran, N.
    University Lyon, France.
    Hauschild, M. Z.
    DTU Technical University of Denmark, Denmark.
    Kerkhof, A.
    Navigant A Guidehouse Company, Netherlands.
    King, H.
    Unilever, UK.
    Margni, M.
    CIRAIG, Canada.
    McLaren, S.
    New Zealand Life Cycle Management Centre, New Zealand; Massey University, New Zealand.
    Mueller, C.
    University of York, UK.
    Owsianiak, M.
    DTU Technical University of Denmark, Denmark.
    Peters, G.
    Chalmers University of Technology, Sweden.
    Roos, Sandra
    RISE Research Institutes of Sweden.
    Sala, S.
    European Commission Joint Research Centre, Italy.
    Sandin, G.
    IVL Swedish Environmental Research Institute, Sweden.
    Sim, S.
    Unilever, UK.
    Vargas-Gonzalez, M.
    Quantis, France.
    Ryberg, M.
    DTU Technical University of Denmark, Denmark.
    Review of life-cycle based methods for absolute environmental sustainability assessment and their applications2020Ingår i: Environmental Research Letters, E-ISSN 1748-9326, Vol. 15, nr 8, artikel-id 083001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In many regions and at the planetary scale, human pressures on the environment exceed levels that natural systems can sustain. These pressures are caused by networks of human activities, which often extend across countries and continents due to global trade. This has led to an increasing requirement for methods that enable absolute environmental sustainability assessment (AESA) of anthropogenic systems and which have a basis in life cycle assessment (LCA). Such methods enable the comparison of environmental impacts of products, companies, nations, etc, with an assigned share of environmental carrying capacity for various impact categories. This study is the first systematic review of LCA-based AESA methods and their applications. After developing a framework for LCA-based AESA methods, we identified 45 relevant studies through an initial survey, database searches and citation analysis. We characterized these studies according to their intended application, impact categories, basis of carrying capacity estimates, spatial differentiation of environmental model and principles for assigning carrying capacity. We then characterized all method applications and synthesized their results. Based on this assessment, we present recommendations to practitioners on the selection and use of existing LCA-based AESA methods, as well as ways to perform assessments and communicate results to decision-makers. Furthermore, we identify future research priorities intended to extend coverage of all components of the proposed method framework, improve modeling and increase the applicability of methods. © 2020 The Author(s). 

  • 2.
    Fantke, Peter
    et al.
    DTU Technical University of Denmark, Denmark.
    Aurisano, Nicolo
    DTU Technical University of Denmark, Denmark.
    Bare, Jane
    United States Environmental Protection Agency, USA.
    Backhaus, Thomas
    University of Gothenburg, Sweden.
    Bulle, Cécile
    CIRAIG ESG UQAM, Canada.
    Chapman, Peter M
    Chapema Environmental Strategies Ltd, Canada.
    De Zwart, Dick
    DdZ Ecotox, The Netherlands.
    Dwyer, Robert
    International Copper Association, USA.
    Ernstoff, Alexi
    Quantis, Switzerland.
    Golsteijn, Laura
    PRé Sustainability, The Netherlands.
    Holmquist, Hanna
    Chalmers University of Technology, Sweden.
    Jolliet, Olivier
    University of Michigan, USA.
    McKone, Thomas E
    University of California, USA.
    Owsianiak, Mikołaj
    DTU Technical University of Denmark, Denmark.
    Peijnenburg, Willie
    National Institute for Public Health and the Environment, The Netherlands.
    Posthuma, Leo
    Radboud University, The Netherlands.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF AB.
    Saouter, Erwan
    European Commission, Italy.
    Schowanek, Diederik
    Procter & Gamble, Belgium.
    van Straalen, Nico M
    Vrije Universiteit Amsterdam, The Netherlands.
    Vijver, Martina G
    Leiden University, The Netherlands.
    Hauschild, Michael
    DTU Technical University of Denmark, Denmark.
    Toward Harmonizing Ecotoxicity Characterization in Life Cycle Impact Assessment.2018Ingår i: Environmental Toxicology and Chemistry, ISSN 0730-7268, E-ISSN 1552-8618, Vol. 37, nr 12, s. 2955-2971Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ecosystem quality is an important area of protection in life cycle impact assessment (LCIA). Chemical pollution has adverse impacts on ecosystems at the global scale. To improve methods for assessing ecosystem impacts, the Life Cycle Initiative hosted at the United Nations Environment Programme established a task force to evaluate the state-of-the-science in modelling chemical exposure of organisms and resulting ecotoxicological effects for use in LCIA. Outcome of the task force work will be global guidance and harmonization by recommending changes to the existing practice in exposure and effect modelling in ecotoxicity characterization. These changes reflect the current science and ensure stability of recommended practice. Recommendations must work within the needs of LCIA in terms of (a) operating on information from any inventory reporting chemical emissions with limited spatiotemporal information, (b) applying best estimates rather than conservative assumptions to ensure unbiased comparison with results for other impact categories, and (c) yielding results that are additive across substances and life cycle stages and allow a quantitative expression of damage to the exposed ecosystem. Here, we report the current framework as well as discuss research questions identified in a roadmap. Primary research questions relate to the approach for ecotoxicological effect assessment, the need to clarify the method's scope and interpretation of its results, the need to consider additional environmental compartments and impact pathways, and the relevance of effect metrics other than the currently applied geometric mean of toxicity effect data across species. Because they often dominate ecotoxicity results in LCIA, metals pose a specific focus, which includes consideration of their possible essentiality and changes in environmental bioavailability. We conclude with a summary of key questions along with preliminary recommendations to address them as well as open questions that require additional research efforts. This article is protected by copyright. All rights reserved.

  • 3.
    Fransson, Kristin
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Posner, Stefan
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF, Energi och miljö.
    Jönbrink, Anna Karin
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Kristinsdottir, Anna Runa
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Roos, Sandra
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Olsson, Elisabeth
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Bäck, Jan
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Wilson, Karin
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Karlsson, Sven
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Miljöhandbokför upphandlare2015Rapport (Övrigt vetenskapligt)
    Abstract [sv]

    Hållbar utveckling innefattar såväl social, ekonomisk som miljömässig hållbar utveckling.

    I Miljöhandboken kommer dessa tre aspekter av hållbar utveckling att behandlas,

    dock ligger störst fokus på miljöaspekterna.

    Miljöhandboken ska hjälpa upphandlare att ställa relevanta miljökrav vid upphandling

    och är ett komplement till exempelvis Konkurrensverkets (f.d. Miljöstyrningsrådets)

    upphandlingskriterier och ska bidra med fakta kring hur miljökrav kan ställas.

    Miljökrav vid upphandling kan innefatta bl. a. energianvändning, livslängd, skadliga

    ämnen, strålning, återvinning och miljöledningssystem. Kravens betydelse påverkas

    bl. a. av upphandlingens omfattning och miljömognaden inom produktsegmentet. I

    miljöhandboken presenteras inga specifika kriterier eller gränsvärden för olika miljöaspekter,

    i stället ges länkar till exempelvis lagstiftning, myndigheter och miljömärkningar.

    Detta för att kriterier och gränsvärden uppdateras kontinuerligt som en följd

    av teknikutveckling men också för att den samlade kunskapen om vad som är miljöproblem

    ständigt växer och kan ge upphov till nya kriterier och gränsvärden. Tyngdpunkten

    i denna handbok ligger på miljöpåverkan ur ett livscykelperspektiv, vilket innebär

    att hänsyn tas till miljöpåverkan från utvinning av råmaterial till resthantering av

    en produkt.

  • 4.
    Goldsworthy, Kate
    et al.
    University of the Arts London, UK.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Material och produktion.
    Sandin, Gustav
    RISE - Research Institutes of Sweden, Bioekonomi, Bioraffinaderi och energi.
    Peters, Greg
    Chalmers University of Technology, Sweden.
    Towards a Quantified Design Process: Bridging Design and Life Cycle Assessment2016Ingår i: Circular Transitions Proceedings, 2016, s. 208-221Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    In this paper we describe how design researchers and environmental researchers are making a joint effort in overcoming the disciplinary barriers for collaboration. By comparing existing processes and identifying potential opportunities arising from inter-disciplinary collaboration the aim is to propose methods for building a bridge between disciplines. A model for “quantified design” is generated, and explored, relevant for designers, design researchers as well as LCA researchers.

  • 5.
    Hedberg, Jonas
    et al.
    KTH Royal Institute of Technology, Sweden.
    Fransson, Kristin
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Prideaux, Sonja
    KTH Royal Institute of Technology, Sweden.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Wallinder, Inger O.
    KTH Royal Institute of Technology, Sweden.
    Improving the life cycle impact assessment of metal ecotoxicity: Importance of chromium speciation, water chemistry, and metal release2019Ingår i: Sustainability, E-ISSN 2071-1050, Vol. 11, nr 6, artikel-id 1655Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Investigations of metal ecotoxicity in life cycle assessment (LCA) and life cycle impact assessment (LCIA) are becoming important tools for evaluating the environmental impact of a product or process. There is, however, improvement needed for LCIA of metal ecotoxicity in order to make this assessment more relevant and robust. In this work, three issues within the LCIA of metal ecotoxicity are investigated, mainly focusing on topics related to stainless steel manufacturing. The first issue is the importance of considering regional water chemistry when constructing the characterization factor (CF). A model freshwater of relevance for stainless steel manufacturing in a region of Sweden was created with chemistry different from available options. The second issue is related to the lack of consideration on changes in speciation of Cr(VI) in freshwater for a given emission, as Cr(VI) to some extent will be reduced to Cr(III). Two new options are suggested based on relationships between the Cr(VI)-total Cr ratio as a way to improve the relevancy of LCIA for Cr(VI) in freshwater. The last issue is how to treat metal release from slags in LCIA. Metal release from slags was shown to vary significantly between different ways of modelling slag emissions (differences in total metal content, slag leaching tests, estimated emissions to groundwater). © 2019 by the authors.

  • 6.
    Holmquist, Hanna
    et al.
    Chalmers University of Technology, Sweden; IVL Swedish Environmental Research Institute, Sweden.
    Roos, Sandra
    RISE Research Institutes of Sweden.
    Schellenberger, Steffen
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Jönsson, Christina
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Peters, Gregory
    Chalmers University of Technology, Sweden.
    What difference can drop-in substitution actually make?: A life cycle assessment of alternative water repellent chemicals2021Ingår i: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 329, artikel-id 129661Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Per- and polyfluoroalkyl substances (PFASs) are used in durable water repellents (DWRs) on outdoor garments and manufacturers are currently phasing out hazardous PFASs. A critical question is: which alternatives should be chosen? The answer should depend on a holistic assessment, but the published inventory data and methodological guidance for assessing PFAS in products is slim and typically limited to hazard assessment. We aim to provide a holistic assessment of the potential environmental consequences of this phase out of DWRs, going beyond the more traditional hazard-focused substitution assessment to also include a broad life-cycle-based assessment of PFASs and their drop-in alternatives. In this study, potential environmental consequences of the phase out were evaluated by applying a life cycle assessment (LCA) to shell jackets with side-chain fluorinated polymer based (i.e., PFASs) or non-fluorinated alternative DWRs with the aim to support a substitution assessment. We demonstrated an innovative approach to impact assessment by inclusion of PFAS related fate and toxicity and invested effort towards contributing new primary inventory data by using a combination of industry dialogue and performance measurements from our larger project context. From a methodological point of view, this paper demonstrates the state-of-the-art in product LCA of persistent textile chemicals and identifies the current limits of this assessment approach. It also delivers new LCI data of use to other analysts. The LCA results in this paper suggest that jackets without PFASs are environmentally preferable. Potential problem shifting due to increased washing and reimpregnation of the jackets did not outweigh PFAS-related potential toxicity impacts as indicated by LCA results. Based on the results presented here, specific DWRs within the non-fluorinated DWR group could not be identified as preferable to others. This LCA does however provide a relevant starting point for more detailed studies on specific DWR systems and it supports moves to phase-out PFASs from non-essential DWR uses. © 2021 The Authors

  • 7.
    Jönbrink, Anna-Karin
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Kristinsdottir, Anna Runa
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Roos, Sandra
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Sundgren, Mats
    Johansson, Eva
    Nyström, Birgitha
    RISE., Swerea, SICOMP.
    Nayström, Peter
    Why use Ecodesign in the industry 2013?: A Survey regarding Barriers and Opportunities related to Ecodesign2013Konferensbidrag (Övrigt vetenskapligt)
  • 8.
    Jönsson, Christina
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Arturin, Oscar L.
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Hanning, Anne-Charlotte
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Landin, Rebecca
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Holmström, Emma
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Microplastics shedding from textiles-developing analytical method for measurement of shed material representing release during domestic washing2018Ingår i: Sustainability, E-ISSN 2071-1050, Vol. 10, nr 7, artikel-id 2457Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The topic of shedding of micro-sized polymeric particles, so called microplastics, from textiles has been covered by an increasing number of studies over the past years. However, the methods with which the shedding of microplastics from textiles has been measured so far has shown a large variation. Consequently, the results regarding the amount of shed particles also vary, from 120 to 728,289 particles from similar garments in recent studies. This article presents research enabling for identification of whether the shedding of microplastics from different types of fabric was dependent on construction parameters. As none of the methods in the existing literature could be used for evaluating shedding of microplastics from textiles, a method was developed for this purpose. The resulting final method is described in this paper as well as the work with minimizing the error sources and consequently the standard deviation of the results through selection of material samples, equipment and procedure for sample preparation, washing, filtering the washing water and analyzing the shed microplastics. Comparing the environmental load of different garments, or identifying improvement possibilities in garment construction are two examples of how the method can be utilized.

  • 9.
    Rex, Desiree
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Oksabol, Sibel
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    possible sustainable berson the market and their technical properties: the fiber bible part 12019Rapport (Övrigt vetenskapligt)
    Abstract [en]

    This report presents a study of the technical performance of new sustainable textile_bers. The sister report scrutinizes the de_nition of “new sustainable textile _bers” andquanti_es the environmental potential of _bers. Together they aim to identify the _berswith the greatest potential to mitigate the environmental impact of _bers currentlydominating the fashion industry.We wanted to quantify the environmental potential of _bers and compare them on a fairand level playing _eld, with the aim to guide policy makers, industry and end customers inselecting “winners” and “losers”. A multitude of other reports and tools with similar aimsexist, though this report includes more types of textile _bers provides more quantitativedata on their performance, and to a greater extent discuss the data found, as well as thedata not found.The work with _nding sustainable _ber alternatives, but also sustainable yarns andfabrics will be on-going in the Mistra Future Fashion programme until the summer of 2019.If you, as a reader, know about sustainable _bers which are missing in the present report,please let us know by e-mail: sandra.roos@ri.se.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Roos, Sandra
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF. Chalmers University of Technology, Sweden.
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Posner, Stefan
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Arvidsson, Rickard
    Chalmers University of Technology, Sweden.
    Svanström, Magdalena
    Chalmers University of Technology, Sweden.
    An inventory framework for inclusion of textile chemicals in life cycle assessment2019Ingår i: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 24, nr 5, s. 838-847Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: Toxicity impacts of chemicals have only been covered to a minor extent in LCA studies of textile products. The two main reasons for this exclusion are (1) the lack of life cycle inventory (LCI) data on use and emissions of textile-related chemicals, and (2) the lack of life cycle impact assessment (LCIA) data for calculating impacts based on the LCI data. This paper addresses the first of these two. Methods: In order to facilitate the LCI analysis for LCA practitioners, an inventory framework was developed. The framework builds on a nomenclature for textile-related chemicals which was used to build up a generic chemical product inventory for use in LCA of textiles. In the chemical product inventory, each chemical product and its content was modelled to fit the subsequent LCIA step. This means that the content and subsequent emission data are time-integrated, including both original content and, when relevant, transformation products as well as impurities. Another key feature of the framework is the modelling of modularised process performance in terms of emissions to air and water. Results and discussion: The inventory framework follows the traditional structure of LCI databases to allow for use together with existing LCI and LCIA data. It contains LCI data sets for common textile processes (unit processes), including use and emissions of textile-related chemicals. The data sets can be used for screening LCA studies and/or, due to their modular structure, also modified. Modified data sets can be modelled from recipes of input chemicals, where the chemical product inventory provides LCA-compatible content and emission data. The data sets and the chemical product inventory can also be used as data collection templates in more detailed LCA studies. Conclusions: A parallel development of a nomenclature for and acquisition of LCI data resulted in the creation of a modularised inventory framework. The framework advances the LCA method to provide results that can guide towards reduced environmental impact from textile production, including also the toxicity impacts from textile chemicals. Recommendations: The framework can be used for guiding stakeholders of the textile sector in macro-level decisions regarding the effectiveness of different impact reduction interventions, as well as for guiding on-site decisions in textile manufacturing.

  • 11.
    Roos, Sandra
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Larsson, Mikael
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Supply chain guidelines: vision and ecodesignaction list2019Rapport (Övrigt vetenskapligt)
    Abstract [en]

    This guideline aims to inspire fashion companies that wants to transform their supplychain to become sustainable. It intends to inform about the current available knowledgethat research can offer and hopefully provide some answers to the issues that refraincompanies from starting the transition.

    The first chapter gives an overview of environmental impacts associated with textileproduction in relation to the carrying capacity of the earth. The recommendations for thetextile industry to keep within the planetary boundaries are:

    • by 2030 reduce emissions of greenhouse gases from textile use by 50%, and by 2050be carbon-neutral;

    • by 2030 textile companies have knowledge of main suppliers’ water sources andrecipients, and the mean monthly river flows. By 2050, the control variable is suggestedto blue water withdrawal as % of mean monthly river flow and cooperation with otherlocal users.

    • by 2030 phase out all persistent organic pollutants (POP) from textile production andminimize use of chemicals as well as responsible handling of chemicals.

    The second chapter discuss the methodology used for developing the guidelines. Thetechnique of back casting was used to create a vision for how a sustainable supply chainliving up to the recommendations above could look like. The next step was to collect aseries of technical solutions that can reduce the environmental impacts, both via industrydialogue and literature sources.

    Finally, the Results chapter presents the actions that have been identified as feasible withtoday’s available technology and with high efficiency in reducing environmental impact.The results chapter also quantifies the effects that the proposed actions would have. Allproposed actions are linked to technologies which are available in bulk scale today.The guidance document ends with the Ecodesign Action List where the intent is for acompany to in a systematic way see what actions are possible, starting with the actionsof highest impact reduction potential first and saving the less efficient (but still efficient)actions for last.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Roos, Sandra
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF. Chalmers University of Technology, Sweden.
    Peters, Gregory M.
    Chalmers University of Technology, Sweden.
    Three methods for strategic product toxicity assessment—the case of the cotton T-shirt2015Ingår i: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 20, nr 7, s. 903-912Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: The use and emission of chemicals and the intrinsic toxic properties of some of these chemicals are an important topic in the textile industry. Quantitative evaluation of toxic impacts is a life cycle assessment (LCA) approach, termed “toxic footprint” in this article. We ask whether calculation of toxic footprints is a useful method to steer the textile industry towards more sustainable use of chemicals. Methods: Three different methods by which strategic product toxicity assessment can be performed within the context of LCA are illustrated and compared using a wet treatment process for a cotton T-shirt as the basis of a case study. The methods are the USEtox model chosen for the European Product Environmental Footprint work, the Score System presented in the European Commission’s Reference Document on Best Available Techniques for the Textiles Industry, and the Strategy Tool presented by Askham. The methods are compared in terms of their ease of use and whether the results give a consistent evaluation of a set of chemicals. Results and discussion: New USEtox characterisation factors for textile chemicals were calculated and used for this article. The results show that the three methods do not give a consistent evaluation of the different wet treatment chemicals. Both the Score System and the Strategy Tool are very concerned with persistent contaminants such as the optical brightener in this case study, which is deemed to be less important by USEtox. The calculations also show how the results generated by the USEtox model depend on whether users apply (1) only the recommended characterisation factors or (2) these and the interim characterisation factors or (3) these and the new characterisation factors calculated for this article. Conclusions and recommendations: With current policy initiatives such as the Product Environmental Footprint now being applied for textile products, toxicity assessment will by default be performed in the LCA of textiles. It is important that the results are relevant and representative as the intended users are supposed to take actions based on them. Confidence in the results is crucial for a scientific method, and therefore, this exploratory comparison exercise shows how benchmarking can be a tool to make the differences in background assumptions explicit, to better understand the differences in the results, and help create such confidence.

  • 13.
    Roos, Sandra
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF. Chalmers University of Technology, Sweden.
    Peters, Gregory M.
    Chalmers University of Technology, Sweden.
    Validation of the results from toxicity assessment in LCA using triangulation2015Ingår i: SETAC Europe 25th Annual Meeting Abstract Book, 2015, s. 28-, artikel-id 121Konferensbidrag (Refereegranskat)
    Abstract [en]

    The European Commission initiative for Product Environmental Footprint is based on life cycle assessment (LCA), with the USEtox consensus model as the recommended impact assessment method for toxicity. The confidence in the scientific robustness will be crucial for the intended users to take actions based on the results. This research work aims to validate the results from toxicity assessment within the context of LCA by benchmarking USEtox with two alternative approaches in a case study. While strictly speaking there can be no experimental validation of environmental damage predicted in an LCA of a generic product, comparison of the results of three different methods can be considered a form of triangulation in LCA which can potentially provide confidence in an individual method. A textile case was chosen as the textile industry is an intense user of chemicals.Three different quantitative or semi-quantitative methods for toxicity assessment were used: the USEtox model chosen for the European PEF work; the Score System presented in the European Commission's Reference Document on Best Available Techniques for the Textiles Industry; and the Strategy Tool presented by Askham. The results show that the three methods do not give a consistent toxicity assessment of the chemicals in the case study. For USEtox the result also depends on whether the practitioner uses the default method or add more characterization factors. The two semi-quantitative methods give more equal importance to the chemicals while the USEtox scores differ by several orders of magnitude. The Simple Score System and the Strategy Tool are very concerned with persistent pollutants and therefore the chemicals which are not readily biodegradable, receive a high score. The USEtox score on the other hand is relatively low for the persistent organic chemicals. Validation of results using triangulation can be used both to create confidence and/or help identify new challenges that were not previously perceived in the method. In this case we showed that the property of persistence is judged to have lower importance in USEtox compared to the two other methods, which is a finding that can be used to develop the fate modelling in USEtox. On the other hand, USEtox could provide additional advice compared to the two other methods, that one of the substances could be more environmentally problematic than what these semi-quantitative methods signals.

  • 14.
    Roos, Sandra
    et al.
    RISE., Swerea, IVF.
    Posner, Stefan
    RISE., Swerea, IVF.
    Rekommendationer för hållbar upphandling av textilier2011Rapport (Övrigt vetenskapligt)
    Abstract [sv]

    Sveriges landsting och regioner har beställt denna rapport som en del i det gemensamma arbetet med hållbarhetskrav i upphandling. Från och med 2010 ställer Sveriges landsting och regioner samma sociala krav på sina leverantörer vid upphandling. Målet är att leverantörerna ska arbeta aktivtmed ansvarstagande i samband med produktionen av de produkter som köps in. Under en studieresa till Indien som landstingen/regionerna genomförde i april 2009 uppmärksammades miljöaspekterna vid textilproduktion och denna rapport är ett fundament till att prioritera vilka miljökrav som ska ställas vidlandstingens/regionernas framtida textilupphandlingar.

    Swerea IVF har för att ta fram rekommendationer för vilka miljökrav som ska ställas i hållbar upphandling av textilier undersökt två produkter, dels genom livscykelanalys och dels genom en kemikalieriskbedömning. De två produktersom har studerats är en patientskjorta (bäddskjorta) och en personalcardigan i stickad trikå av bomull och polyester. En specifik frågeställning har varit omoblekt bomull är miljömässigt bättre än blekt ur ett livscykelperspektiv ochäven miljökonsekvenserna av olika val av infärgning av plagg. Resultatet från livscykelanalysen och kemikalieriskbedömningen har sedan använts för att ta fram rekommendationer. Det kan noteras att det är svårt att få fram relevanta data i leverantörskedjan för textila produkter vilket även gäller idetta projekt.

    Resultatet av livscykelanalysen visar att produktionen av trikån är totalt dominerande för miljöpåverkan i de olika faserna av livscykeln; produktion av trikå, våtberedning, konfektionering, transport och användning. I produktionen av trikå ingår bomullsodling och förädling till bomullsgarn samtråvaror till och framställning av polyestergarn och stickningen till trikå. Ianvändningsfasen har tvättprocessen enligt överenskommelse lämnats utanför beräkningarna i studien, då det inte direkt påverkar kriterierna för att köpa in textilier. Tidigare studier visar att tvättprocessen ger ett stort bidrag till miljöpåverkan under livscykeln och detta diskuteras i rapporten. När det gäller blekprocessen visar studien att det är inte någon större skillnad i miljöpåverkan mellan att bleka (med väteperoxid) och att inte bleka skjortan. Dock är denna slutsats dragen utifrån information om att den processen som används i verkligheten i Indien motsvarar den svenska process som använts för modelleringen (bästa tillgängliga teknik). En övergång från blekt till oblekt medför mindre användning av optiskt vitmedel, och är på så sätt en merhållbar lösning. Det går i dagsläget inte att bedöma miljömässiga för- och nackdelar med olika recept för infärgning, då sådan information inte är allmänt tillgänglig idag i leverantörsledet om dessa kemikalier. En meleradlösning skulle fungera genom att enbart infärga polyestern, vilket skulle minska miljöpåverkan genom både minskad vatten, energi, och kemikaliekonsumtion. Det som kan sägas om ett optimalt färgrecept är att omalla landsting väljer samma färg, nyans och övrigt utseende skulle detinnebära större förutsättningar att driva igenom sina miljökrav.

    Slutsatsen från den kemiska riskbedömningen är att det saknas mycket data om de ämnen som används under produktionen och de åtgärder som har vidtagits för att minimera hälso- och miljöpåverkan. Framförallt saknas information om ämnenas bioackumulerande förmåga och data omfördelningen av emissioner i avloppet, d v s effektiviteten i vattenreningen. Författarna anser att den scoring modell som presenterats i rapporten är användbar som ett redskap för att bedöma hälso- och miljöpåverkan i produktionen och för att fatta beslut om vilka kemikalier som ska användas. Utgående från den informationen som är allmänt tillgänglig idag i leverantörsledet är det dock svårt att få in tillräckligt mycket av den informationen som krävs för att modellen ska vara användbar och kunna bedöma vilket kemikalierecept som är det bästa alternativet.

    Nedan följer kortfattat Swerea IVFs rekommendationer på vad som kan förbättras.

    1. Sätt krav även i produktionsledet, inte bara på varan. - Ställ krav på att det inte används kemiska ämnen klassificerade som Substances of Very High Concern (SVHC)1 varken vidtillverkning eller som tillsatser i offererade varor. - Kräv att få in data om kemikalier i relevanta textila processer:         Säkerhetsdatablad/materialdatablad som håller den kvalitet och kompletthet som föreskrivs i REACH Bilaga2.         Data om utsläppsmängder efter rening och vilken typ av reningsanläggning som används. - Skapa en lista över tillåtna kemikalier, eller kräv kemikalier med exempelvis maxvärdet 16 enligt scoring modellen. - Ställ kunskapskrav på leverantörerna dels kring vilka kemikalier som används i produktionen och dels kring deras processers miljöpåverkan

    2. Skapa en ”road map” för hur kraven i framtiden ska öka i rimlig takt och stegvis.

    3. Sätt krav som går att säkerställa och följa upp och lägg resurser på uppföljningen.

    4. Underlätta för landstingen att samordna sina krav - Verka för utveckling av upphandlingskriterierna i flera organisationer som SIS, Miljöstyrningsrådet, Nationella Textilrådet eller andra forum. - Öka standardiseringen av landstingskläder. Skriv in i SIS TK332 hur plaggen ska vara och öppna inte för variationer i varje landsting.

    5. Överväg byte till fibrer framställda från skogsråvara.

    Författarna till den här rapporten rekommenderar att landstingen/regionerna skaffar sig bättre kunskap om produktionsprocesserna och de verkliga förhållandena i leverantörsländerna. Det finns stora kunskapsluckor, vilket inte är specifikt för landstingen utan en genomgående trend inom hela textilbranschen, och en konsekvens av att produktionen sker i avlägsna länder.

    Det krävs sannolikt att kunderna har krav på processerna för att få in data från produktionsprocesserna. För att landstingen/regionerna ska kunna ställa krav på processerna utifrån sina förutsättningar bör landsting/regioner ta fram gemensamma krav som inte innebär snedvriden konkurrens och lägga resurser på att följa upp dem.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Roos, Sandra
    et al.
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Posner, Stefan
    Stefan Posner AB, Sweden.
    Jönsson, Christina
    RISE Research Institutes of Sweden, Material och produktion.
    Elisabeth Olsson, Elisabeth
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Linden, Hanna
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Schellenberger, Steffen
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Larsson, Mikael
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Hanning, Anne-Charlotte
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Arvidsson, Rickard
    Chalmers University of Technology, Sweden.
    A Function-Based Approach for Life Cycle Management of Chemicals in the Textile Industry2020Ingår i: Sustainability, E-ISSN 2071-1050, Vol. 12, nr 3, artikel-id 1273Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Consumer products such as clothes and footwear sometimes contain chemical substances with properties that pose a risk to human health and the environment. These substances, restricted by law or company policy, are in focus for chemicals management processes by textile retailers. However, complex and non-transparent supply chains, and limited chemical knowledge, makes chemicals management challenging. Therefore, a function-based approach for life cycle management (LCM) of chemicals was developed, based on results of previous projects and evaluated using a two-step Delphi process. The resulting approach aims to help retailers identify and substitute hazardous substances in products, and consists of three parts: (i) a function-based chemicals management concept model for different levels of chemical information within the supply chain, (ii) tools for non-chemists which explain chemical information, and (iii) a continuous provision of knowledge to stakeholders (e.g., retailers) in a network. This approach is successfully implemented by over 100 retailers in the Nordic countries, providing the textile industry with practical and robust tools to manage and substitute hazardous chemicals in products and production processes. We conclude that the developed approach provides an explicit link, communication, and knowledge sharing between actors in the supply chain, which has proven important in chemicals LCM.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Roos, Sandra
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Posner, Stefan
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Peters, Greg M.
    Chalmers University of Technology, Sweden.
    Is Unbleached Cotton Better Than Bleached? Exploring the Limits of Life-Cycle Assessment in the Textile Sector2015Ingår i: Clothing & Textiles Research Journal, ISSN 0887-302X, E-ISSN 1940-2473, Vol. 33, nr 4, s. 231-247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The applicability of life-cycle assessment (LCA) for the textile industry is discussed with a special focus on environmental impact from chemicals. Together with issues of water depletion and energy use, the use of chemicals and their emissions are important environmental considerations for textile products. However, accounting for chemicals is a weak point in LCA methodology and practice. Two research questions were investigated in a case study of hospital garments: 1) whether LCA adds value to assessments of the chemical performance of textile products, and 2) whether inclusion of toxicity issues in LCA affects environmental performance rankings for textile products. It is concluded that the quantitative and holistic tool LCA is useful for environmental decision makers in the textile industry, and becomes more effective when chemical impacts are included. A flexible way forward is demonstrated to meet the challenge of accounting for chemicals in LCAs of textile products.

  • 17.
    Roos, Sandra
    et al.
    RISE., Swerea, IVF.
    Szpeig, Magdalena
    Livscykelanalys av Z-Bee, ett eldrivet fordon i kompositmaterial2012Rapport (Övrigt vetenskapligt)
  • 18.
    Roos, Sandra
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Zamani, Bahare
    Chalmers University of Technology, Sweden.
    Sandin, Gustav
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Biobaserade material och produkter.
    Peters, Greg M.
    Chalmers University of Technology, Sweden.
    Svanström, Magdalena
    Chalmers University of Technology, Sweden.
    A life cycle assessment (LCA)-based approach to guiding an industry sector towards sustainability: the case of the Swedish apparel sector2016Ingår i: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 133, s. 691-700Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The environmental challenges associated with consumption of textiles have generally been investigated on product level in Life Cycle Assessment (LCA) studies. For social sustainability aspects, social hotspot analysis has instead been applied on the textile sector level. The aim with the industry sector approach developed by the authors was to enable assessment of different interventions in terms of how they contribute to reaching targets for environmental and social sustainability, on the sector level. The approach was tested in a case study on the Swedish apparel sector. The industry sector approach consists of three steps that address three different questions: 1) What is the current sustainability performance of the sector? 2) What is an acceptable sustainability performance for the sector? 3) Are proposed interventions enough to reach an acceptable sustainability performance? By answering these questions, it is possible to measure performance in relation to sector level targets and learn which types of interventions (technical improvements, behavioral changes, new business models, etc.), and which actors (manufacturers, retailers, consumers, authorities, etc.) that can potentially provide the greatest improvements. By applying the approach in the case study, conclusions could be drawn on whether specific interventions appear to be sufficient or not in relation to the set environmental targets. The influence of the interventions in relation to reaching targets for social sustainability was found to be the most difficult to measure due to lack of data. To spur the industry sector's stakeholders to actualize the full potential of the most effective environmental interventions, a scheme for structured evaluation of LCA results directed towards these prospective actors was developed. Based on the results from the study, actor-oriented advice could be provided.

  • 19.
    Sandin, Gustav
    et al.
    RISE - Research Institutes of Sweden, Bioekonomi.
    Roos, Sandra
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Johansson, Malin
    RISE - Research Institutes of Sweden, Samhällsbyggnad, Energi och cirkulär ekonomi.
    Environmental impact of textile fibers – what we know and what we don't know: Fiber Bible part 22019Rapport (Övrigt vetenskapligt)
    Abstract [en]

    Production of cotton and synthetic fibres are known to cause negative environmental effects. For cotton, pesticide use and irrigation during cultivation contributes to emissions of toxic substances that cause damage to both human health and the ecosystem. Irrigation of cotton fields cause water stress due to large water needs. Synthetic fibres are questionable due to their (mostly) fossil resource origin and the release of microplastics. To mitigate the environmental effects of fibre production, there is an urgent need to improve the production of many of the established fibres and to find new, better fibre alternatives.

    For the first time ever, this reports compiles all currently publicly available data on the environmental impact of fibre production. By doing this, the report illuminates two things:

    • There is a glaring lack of data on the environmental impact of fibres – for several fibres just a few studies were found, and often only one or a few environmental impacts are covered. For new fibres associated with sustainability claims there is often no data available to support such claims.
    • There are no ”sustainable” or ”unsustainable” fibre types, it is the suppliers that differ. The span within each fibre type (different suppliers) is often too large, in relation to differences between fibre types, to draw strong conclusions about differences between fibre types.

    Further, it is essential to use the life cycle perspective when comparing, promoting or selecting (e.g. by designers or buyers) fibres. To achieve best environmental practice, apart from considering the impact of fibre production, one must consider the functional properties of a fibre and how it fits into an environmentally appropriate product life cycle, including the entire production chain, the use phase and the end-of-life management. Selecting the right fibre for the right application is key for optimising the environmental performance of the product life cycle.

    The report is intended to be useful for several purposes:

    • as input to broader studies including later life cycle stages of textile products,
    • as a map over data gaps in relation to supporting claims on the environmental preferability of certain fibres over others, and
    • as a basis for screening fibre alternatives, for example by designers and buyers (e.g. in public procurement).

    For the third use it is important to acknowledge that for a full understanding of the environmental consequences of the choice of fibre, a full cradle-to-grave life cycle assessment (LCA) is recommended.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Sandin, Gustav
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut.
    Roos, Sandra
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Zamani, Bahareh
    Chalmers University of Technology, Sweden.
    Peters, Gregory M.
    Chalmers University of Technology, Sweden.
    Svanström, Magdalena
    Chalmers University of Technology, Sweden.
    Using the planetary boundaries for evaluating interventions for impact reduction in the clothing industry2015Ingår i: Proceedings of the 7th International Conference on Life Cycle Management, 2015, s. 608-Konferensbidrag (Refereegranskat)
  • 21.
    Schellenberger, Steffen
    et al.
    Stockholm University, Sweden.
    Gillgard, Philip
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Stare, Ann
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Hanning, Anne-Charlotte
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Levenstam, O.
    University of Borås, Sweden.
    Roos, Sandra
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Cousins, I. T.
    Stockholm University, Sweden.
    Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics2018Ingår i: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 193, s. 675-684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with “long” perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids.

    Ladda ner fulltext (pdf)
    fulltext
1 - 21 av 21
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf