Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Fire Technology.
    Durgun, Özum
    RISE Research Institutes of Sweden, Built Environment, System setup and Service Innovation.
    Williams Portal, Natalie
    RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.
    Orosz, Katalin
    RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics.
    Honfi, Daniel
    RISE Research Institutes of Sweden, Built Environment, Building and Real Estate.
    Reitan, Nina Kristine
    RISE Research Institutes of Sweden, Safety and Transport, Fire Technology.
    Efficient emergency responses to vehicle collision, earthquake, snowfall, and flooding on highways and bridges: A review2020In: Journal of Emergency Management, ISSN 1543-5865, Vol. 18, no 1, p. 51-72Article in journal (Refereed)
    Abstract [en]

    This review article analyzes factors affecting emergency response to hazardous events on highways and their bridges, with focus on man-made and natural scenarios: heavy vehicle collision with a bridge, earthquake, heavy snowfall, and flooding. For each disaster scenario, selected historical events were compiled to determine influential factors and success criteria for efficient emergency response, both related to organizational and technical measures. This study constituted a part of a resilience management process, recently developed and demonstrated within the European Union (EU)-funded H2020 project IMPROVER and can be a useful approach in aiding operators of transportation infrastructure to improve their resilience to emergency incidents.

  • 2.
    Lange, David
    et al.
    University of Queensland, Australia.
    Sjöström, Johan
    RISE Research Institutes of Sweden, Safety and Transport, Fire Technology.
    Schmid, Joachim
    ETH Zurich, Switzerland.
    Brandon, Daniel
    RISE Research Institutes of Sweden, Safety and Transport, Fire Technology.
    Hidalgo, Juan
    University of Queensland, Australia.
    A Comparison of the Conditions in a Fire Resistance Furnace When Testing Combustible and Non-combustible Construction2020In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099Article in journal (Refereed)
    Abstract [en]

    This paper reports on two experiments conducted in a fire resistance furnace to study the differences in the boundary conditions, the fire dynamics and the fuel required to run the furnace when a combustible timber specimen as opposed to a non-combustible concrete specimen is tested. In both experiments measurements were taken in the furnace to evaluate the difference in the environments of the furnace and the response of the elements being tested. These include non-control plate thermometers distributed throughout the furnace; O2, CO2 and CO gas measurements taken at different distances from the specimen surface and in the furnace exhaust; instrumentation of one of the bricks comprising the furnace lining with thermocouples at different depths from the exposed surface; and mass loss of the combustible timber specimen. Thermal exposure of elements in a furnace is discussed, as well as the impact of the different materials on the similarity of thermal exposure. This is done through analysis and discussion of the different measurements taken and the apparent influence of the specimen being tested on the boundary condition of the heat diffusion equation. We conclude that; (1) the fire dynamics in a furnace are dependent on the specimen being tested; (2) that the test with the combustible specimen requires less fuel flow to the burners such that the control plate thermometers follow the ISO 834 temperature–time curve compared to the non-combustible specimen, however that this is not only a result of the combustibility of the specimen but is also a consequence of the different thermal inertia of the two materials; (3) that the boundary condition for heat transfer to a test object in furnace tests is dependent on the properties of the specimen being tested; and (4) that the timber when placed on the furnace experiences smouldering combustion after the char layer has formed. A fire resistance test of combustible construction of a given period represents a significantly less onerous test in terms of energy absorbed or fuel made available than one of a non-combustible construction, implying that the existing fire resistance framework may not be appropriate for timber structures and that an alternative approach may be required.

  • 3.
    Rebaque, Virginia
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Ertesvåg, Ivar
    NTNU Norwegian University of Science and Technology, Norway.
    Fjellgaard Mikalsen, Ragni
    RISE Research Institutes of Sweden, Safety and Transport, Fire Technology. Western Norway University of Applied Sciences, Norwaay; Otto von Guericke University Magdeburg, Germany.
    Steen-Hansen, Anne
    RISE Research Institutes of Sweden, Safety and Transport, Fire Technology.
    Experimental study of smouldering in wood pellets with and without air draft2020In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 264, article id 116806Article in journal (Refereed)
    Abstract [en]

    Dry wood pellets (diameter 8 mm) of mixed Norwegian spruce and pine were tested in samples of 1.25 kg (1.7 l) in configurations with and without air draft from below. The pellets were placed in a vertical 15 cm diameter cylinder on top of a hot plate. Air draft inlet, when allowed, came through narrow openings in the cylinder bottom periphery. The bulk void of 36% formed channels for gas flows within the pellets bed. Initially, the samples were heated externally from below for 6 h. Time series of distributed temperatures were recorded, together with values of the mass. Smouldering with air draft was observed with two distinct behaviours: Type 1, where the sample after the period of external heating cooled down for several hours, and then increased in temperature to intense smouldering, and Type 2, where the sample went into intense smouldering before the end of external heating. Without draft airflow from below, the sample cooled down after external heating, before developing into intense smouldering about 20 h later. In all cases, the intense period lasted for 2 h. Typical temperatures were in the range 300–450 °C, while higher temperatures occurred in the intense period. Draft flow caused fast oxidation spreading, while slow without draft. Indications of oxidation spreading as a distriäbuted reaction were seen. Circulating air motions in the irregular void between individual pellets is discussed as an explanation for the behaviour. Uneven access to oxygen, with possibilities of locally excess air, can explain the peak temperatures observed. © 2019 The Author(s)

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9