Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arrhenius, Karine
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Bohlen, Haleh
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Büker, Oliver
    RISE Research Institutes of Sweden, Safety and Transport, Measurement Technology.
    de Krom, Iris
    VSL Dutch Metrology Institute, Netherlands.
    Heikens, Dita
    VSL Dutch Metrology Institute, Netherlands.
    van Wijk, Janneke
    VSL Dutch Metrology Institute, Netherlands.
    Hydrogen purity analysis: Suitability of sorbent tubes for trapping hydrocarbons, halogenated hydrocarbons and sulphur compounds2020In: Applied Sciences, E-ISSN 2076-3417, Vol. 10, no 1, article id 120Article in journal (Refereed)
    Abstract [en]

    The ISO 14687-2 standard sets requirements for the purity of the hydrogen that is delivered at refuelling stations. These specifications cover a wide range of impurities and include challenging measurements, mainly due to the very low levels of the required detection limits and the need for "total" measurements (total hydrocarbons, total sulphur compounds, halogenated compounds). Most of the compounds belonging to the species are organic. Thermal desorption often coupled with gas chromatography is a common speciation method used to determine the content of organic impurities. However, no existing sorbent tubes are sufficiently universal to trap all possible impurities; depending on the sorbents and the sampling volume, some compounds may irreversibly adsorb or may break through. It is therefore necessary to evaluate sorbents for the compounds targeted at the level required. In this study, the suitability of sorbent tubes for trapping organic impurities in hydrogen was investigated. Suitable sorbents were selected based on a literature review of suitable sorbent materials. Short-term stability studies for compounds among hydrocarbons, halogenated compounds and sulphurcompounds on the selected sorbents have then been performed for storage periods of two weeks since this is the period typically required to complete the collection, transport and analysis of hydrogen samples. The study clearly shows that the method is promising for total species, even through the results show that not all of the compounds belonging to the three total species to be analysed when performing hydrogen purity analysis can be quantified on one unique sorbent. A multibed sorbent consisting of Tenax TA (weak), Carboxen 1003 (medium), Carbograph 1 (strong) is shown to be a versatile sorbent suitable for the three "total species"; only a few compounds from each family would need to be analysed using other analytical methods. This method proposed here for total species will not only provide a sum of concentrations, but also an identification of which compound(s) is/are actually present in the hydrogen.

  • 2.
    Badrzadeh, B
    et al.
    Australian Energy Market Operator, Australia.
    Emin, Zia
    PSC Power Systems Consultants, USA.
    Hillberg, Emil
    RISE Research Institutes of Sweden, Safety and Transport, Measurement Technology.
    Jacobson, D
    Manitoba Hydro, Canada.
    Kocewiak, L
    Ørsted Offshore, Denmark.
    Lietz, G
    Digsilent, Germany.
    da Silva, F
    Aalborg university, Denmark.
    Val Escudero, M
    Eirgrid, Ireland.
    The Need or Enhanced Power System Modelling Techniques and Simulation Tools2020In: CIGRE SCIENCE & ENGINEERING, E-ISSN 2426-1335, Vol. 17, no Febr, p. 30-46Article in journal (Refereed)
    Abstract [en]

    The transition to a clean energy future requires thorough understanding of increasingly complex interactions between conventional generation, network equipment, variable renewable generation technologies (centralised and distributed), and demand response. Secure and reliable operation under such complex interactions requires the use of more advanced power system modelling and simulation tools and techniques. Conventional tools and techniques are reaching their limits to support such paradigm shifts. This paper provides an overview of commonly used and emerging power system simulation tools and techniques. Applications of these tools ranging from real-time power system operation to long-term planning are also discussed. Various approaches to gain confidence in the accuracy and applicability of the simulation models are presented. The paper then discusses emerging trends in simulation tools and techniques primarily stemming from the transition to a power system with increased penetration of inverter-based resources as these are used in variable renewable energy technologies.

  • 3.
    Brolin, Magnus
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Measurement Technology.
    Pihl, Hjalmar
    RISE Research Institutes of Sweden, Safety and Transport, Measurement Technology.
    Design of a local energy market with multiple energy carriers2020In: International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, E-ISSN 1879-3517, Vol. 118, article id 105739Article in journal (Refereed)
    Abstract [en]

    Recent developments in the electric power sector as well as in district heating and cooling systems has led to an increased interest in local energy systems and markets. In the electricity sector, this is driven by the integration of distributed resources such as solar power, electric vehicles and demand response. For district heating, sustainability and energy efficiency targets drives the development to further exploit small-scale heat sources. A closer integration of these energy carriers can also unlock potential flexibility, to the benefit of local as well as overlaying systems. In this respect, there is a need to further explore the possibilities to design local energy markets to facilitate the integration between electricity and district heating, as well as providing adequate instruments enabling flexibility. This paper therefore presents a market clearing design, based on optimization, for local energy markets incorporating multiple energy carriers and bid structures suitable for representing flexibility. The market clearing model is applied in a case study to illustrate and validate key design elements. One conclusion is that even though various elements can be added to the market clearing function, there is a challenge to interpret the results due to an increased complexity of the resulting optimization problem. 

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9