Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Linden, Hanna
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Diedrich, Andreas
    University of Gothenburg, Sweden.
    Baumann, Henrikke
    Chalmers University of Technology, Sweden.
    Life cycle work: A process study of the emergence and performance of life cycle practice2020In: Organization & environment, ISSN 1086-0266, E-ISSN 1552-7417Article in journal (Refereed)
    Abstract [en]

    Life cycle management (LCM) is a concept that goes beyond traditional corporate environmental management, due to its’ focus on a product’s entire life cycle. The spread of such concepts is usually understood in terms of processes of ‘diffusion’, whereby ideas spread over time by some inexplicable force. However, diffusion has proven less adequate to describe how ideas spreads in practice. Here, we address this oversight by studying the emergence and performance of what we refer to as life cycle practices. Drawing on an analysis of the development of a sustainability portfolio within a globally-operating manufacturing company, we illustrate the kinds of life cycle work involved in dealing with local activities and interests, connecting activities and interests into action-nets, performing life cycle practices, and spreading the life cycle idea. Finally, we discuss implications of life cycle work for research in the field of organization and management studies and for LCM research.

  • 2.
    Roos, Sandra
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Posner, Stefan
    Stefan Posner AB, Sweden.
    Jönsson, Christina
    RISE Research Institutes of Sweden, Materials and Production.
    Olsson, Elisabeth
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Linden, Hanna
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Schellenberger, Steffen
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Larsson, Mikael
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Hanning, Anne-Charlotte
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Arvidsson, Rickard
    Chalmers University of Technology, Sweden.
    A Function-Based Approach for Life Cycle Management of Chemicals in the Textile Industry2020In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050Article in journal (Refereed)
    Abstract [en]

    Consumer products such as clothes and footwear sometimes contain chemical substances with properties that pose a risk to human health and the environment. These substances, restricted by law or company policy, are in focus for chemicals management processes by textile retailers. However, complex and non-transparent supply chains, and limited chemical knowledge, makes chemicals management challenging. Therefore, a function-based approach for life cycle management (LCM) of chemicals was developed, based on results of previous projects and evaluated using a two-step Delphi process. The resulting approach aims to help retailers identify and substitute hazardous substances in products, and consists of three parts: (i) a function-based chemicals management concept model for different levels of chemical information within the supply chain, (ii) tools for non-chemists which explain chemical information, and (iii) a continuous provision of knowledge to stakeholders (e.g., retailers) in a network. This approach is successfully implemented by over 100 retailers in the Nordic countries, providing the textile industry with practical and robust tools to manage and substitute hazardous chemicals in products and production processes. We conclude that the developed approach provides an explicit link, communication, and knowledge sharing between actors in the supply chain, which has proven important in chemicals LCM.

  • 3.
    van der Veen, Ike
    et al.
    Vrije Universiteit, Netherlands.
    Hanning, Anne-Charlotte
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Stare, Ann
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Leonards, Pim
    Vrije Universiteit, Netherlands.
    de Boer, Jacob
    Vrije Universiteit, Netherlands.
    Weiss, Jana
    Stockholm University, Sweden.
    The effect of weathering on per- and polyfluoroalkyl substances (PFASs) from durable water repellent (DWR) clothing2020In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 249, article id 126100Article in journal (Refereed)
    Abstract [en]

    To assess the effects of weathering on per- and polyfluoroalkyl substances (PFASs) from durable water repellent (DWR) clothing, thirteen commercial textile samples were exposed to elevated ultra violet (UV) radiation, humidity, and temperature in an aging device for 300 h, which mimics the lifespan of outdoor clothing. Before and after aging, the textile samples were extracted and analysed for the ionic PFASs (perfluoroalkyl acids (PFAAs), perfluorooctane sulfonamide (FOSA)) and volatile PFASs (fluorotelomer alcohols (FTOHs), acrylates (FTACs) and methacrylates (FTMACs)). Results showed that weathering can have an effect on PFASs used in DWR of outdoor clothing, both on the PFAS profile and on the measured concentrations. In most weathered samples the PFAA concentrations increased by 5- to more than 100-fold, while PFAAs not detected in the original textiles were detected in the weathered samples. DWR chemistries are based on side-chain fluorinated polymers. A possible explanation for the increase in concentration of the PFAAs is hydrolysis of the fluorotelomer based polymers (FTPs), or degradation of the FTOHs, which are used in the manufacturing of the FTPs. The concentrations of volatile PFASs also increased, by a factor up to 20. Suggested explanations are the degradation of the DWR polymers, making non-extractable fluorines extractable, or the transformation or degradation of unknown precursors. Further research is needed to unravel the details of these processes and to determine the transformation routes. This study shows that setting maximum tolerance limits only for a few individual PFASs is not sufficient to control these harmful substances in outdoor clothing.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9