Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Holmberg, Jonas
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes. University West, Sweden.
    Wretland, Anders
    GKN Aerospace Sweden AB, Sweden.
    Berglund, Johan
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes.
    Beno, Tomas
    University West, Sweden.
    A detailed investigation of residual stresses after milling Inconel 718 using typical production parameters for assessment of affected depth2020In: Materials Today Communications, ISSN 2352-4928, Vol. 24, article id 100958Article in journal (Refereed)
    Abstract [en]

    Production of superalloy gas turbine parts involves time consuming milling operations typically performed in a sequence from rough to finish milling. Rough milling using ceramic inserts allows high removal rates but causes severe sub-surface impact. A relatively large allowance is therefore left for subsequent cemented carbide milling. With increased knowledge of the affected depth it will be possible to reduce the machining allowance and increase efficiency of the manufacturing process. Milling Inconel 718 using typical production parameters has been investigated using new and worn ceramic and cemented carbide inserts. Residual stresses in a milled slot were measured by x-ray diffraction. Stresses were measured laterally across the slot and below the surface, to study the depth affected by milling. The most important result from this work is the development of a framework concerning how to evaluate the affected depth for a milling operation. The evaluation of a single milled slot shows great potential for determining the optimum allowance for machining. Our results show that the residual stresses are greatly affected by the ceramic and cemented carbide milling; both regarding depth as well as distribution across the milled slot. It has been shown that it is important to consider that the stresses across a milled slot are the highest in the center of the slot and gradually decrease toward the edges. Different inserts, ceramic and cemented carbide, and tool wear, alter how the stresses are distributed across the slot and the affected depth.

  • 2.
    Liens, Alethea
    et al.
    Université de Lyon, France; ANTHOGYR, France.
    Reveron, Helen
    Université de Lyon, France.
    Douillard, Thierry
    Université de Lyon, France.
    Blanchard, Nicholas
    Université de Lyon, France.
    Lughi, Vanni
    University of Trieste, Italy.
    Sergo, Valter
    University of Trieste, Italy; University of Macau, China.
    Laquai, Rene
    BAM Bundesanstalt für Materialforschung und -Prüfung, Germany.
    Müller, Bernd
    BAM Bundesanstalt für Materialforschung und -Prüfung, Germany.
    Bruno, Giovanni
    BAM Bundesanstalt für Materialforschung und -Prüfung, Germany.
    Schomer, Sven
    MOESCHTER GROUP Holding GmbH, Germany.
    Fürderer, Tobias
    MOESCHTER GROUP Holding GmbH, Germany.
    Adolfsson, Erik
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes.
    Courtois, Nicolas
    ANTHOGYR, France.
    Swain, Michael
    University of Sydney, Australia; Don State Technical University, Russia.
    Chevalier, Jerome
    Université de Lyon, France.
    Phase transformation induces plasticity with negligible damage in ceria-stabilized zirconia-based ceramics2020In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 183, p. 261-273Article in journal (Refereed)
    Abstract [en]

    Ceramics and their composites are in general brittle materials because they are predominantly made up of ionic and covalent bonds that avoid dislocation motion at room temperature. However, a remarkable ductile behavior has been observed on newly developed 11 mol.% ceria-stabilized zirconia (11Ce-TZP) composite containing fine alumina (8 vol.% Al2O3) and elongated strontium hexa-aluminate (8 vol.% SrAl12O19) grains. The as-synthesized composite also has shown full resistance to Low Temperature Degradation (LTD), relatively high strength and exceptionally high Weibull modulus, allowing its use in a broader range of biomedical applications. In this study, to deepen the understanding of plastic deformation in Ce-TZP based composites that could soon be used for manufacturing dental implants, different mechanical tests were applied on the material, followed by complete microstructural characterization. Distinct from pure Ce-TZP material or other zirconia-based ceramics developed in the past, the material here studied can be permanently strained without affecting the Young modulus, indicating that the ductile response of tested samples cannot be associated to damage occurrence. This ductility is related to the stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation, analogue to Transformation-Induced Plasticity (TRIP) steels, where retained austenite is transformed to martensite. The aim of this study is to corroborate if the observed plasticity can be associated exclusively to the zirconia t-m phase transformation, or also to microcraking induced by the transformation. The t-m transformed-zones produced after bending and biaxial tests were examined by X-ray refraction and SEM/TEM coupled with Raman. The results revealed that the observed elastic-plastic behavior occurs without extensive microcracking, confirming a purely elastic-plastic behavior driven by the phase transformation (absence of damage).

  • 3.
    Perez Caro, Lluis
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes. Luleå University of Technology, Sweden.
    Odenberger, Eva-Lis
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes. Luleå University of Technology, Sweden.
    Schill, Mikael
    DYNAmore Nordic AB, Sweden.
    Steffenburg-Nordenström, Joachim
    GKN Aerospace Engine Systems Sweden, Sweden.
    Niklasson, Fredrik
    GKN Aerospace Engine Systems Sweden, Sweden.
    Oldenburg, Mats
    Luleå University of Technology, Sweden.
    Prediction of shape distortions during forming and welding of a double-curved strip geometry in alloy 7182020In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015Article in journal (Refereed)
    Abstract [en]

    The finite element method (FEM) has considerably contributed to the development of advanced manufacturing methods for metal structures. The prediction of the final shape of a component is of great interest to the manufacturing industry. The level of demand may increase due to multistage processes. Therefore, including all steps of the manufacturing chain in the simulations is a key to being successful. This has been done for a long time in the stamping industry, which involves sequences of forming, trimming, and springback. However, more complex manufacturing procedures that include assembling of formed parts with forgings and castings via welding have been modelled with simplifications, resulting in a reduced prediction accuracy. In the present study, a double-curved part manufactured from alloy 718 is formed at 20 °C and laser-welded using the bead-on-plate procedure. The coupling of different manufacturing analyses, including cold forming, trimming, result mapping, welding, cooling, and springback, is achieved using LS-DYNA. Additionally, the effect of adding a damage and failure model in the forming simulation is studied. The results of the forming analysis are used as inputs for the material model *MAT_CWM in the welding simulation. The anisotropic thermomechanical properties of alloy 718 are determined at temperatures up to 1000 °C. Encouraging agreement is found between the model predictions and the results of forming and welding tests. The findings underscore the importance of including the material history and accurate process conditions along the manufacturing chain to both the prediction accuracy of shape distortions, and to the potential of the industry. © 2020, The Author(s).

    Download full text (pdf)
    Erratum
  • 4.
    Zimmerman, Jordan J
    et al.
    Medical College of WI, USA.
    Bain, James LW
    Medical College of WI, USA.
    Wu, Chaowen
    Medical College of WI, USA.
    Lindell, Hans
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes.
    Grétarsson, Snævar Leó
    RISE Research Institutes of Sweden, Materials and Production, Manufacturing Processes.
    Riley, Danny A
    Medical College of WI, USA.
    Riveting hammer vibration damages mechanosensory nerve endings2020In: Journal of the peripheral nervous system, ISSN 1085-9489, E-ISSN 1529-8027Article in journal (Refereed)
    Abstract [en]

    Background and Aims Hand-arm vibration syndrome (HAVS) is an irreversible neurodegenerative, vasospastic and musculoskeletal occupational disease of workers using powered hand tools. The etiology is poorly understood. Neurological symptoms include numbness, tingling and pain. This study examines impact hammer vibration-induced injury and recoverability of hair mechanosensory innervation. Methods Rat tails were vibrated 12?min/d for 5 wk followed by 5 wk recovery with synchronous non-vibrated controls. Nerve fibers were PGP9.5 immunostained. Lanceolate complex innervation was compared quantitatively in vibrated vs sham. Vibration peak acceleration magnitudes were characterized by frequency power spectral analysis. Results Average magnitude (2515?m/s2, rms) in kHz frequencies was 109 times that (23?m/s2) in low Hz. Percentage of hairs innervated by lanceolate complexes was 69.1% in 5wk sham and 53.4% in 5wk vib generating a denervation difference of 15.7% higher in vibration. Hair innervation was 76.9% in 5wk recovery sham and 62.0% in 5wk recovery vibration producing a denervation difference 14.9% higher in recovery vibration. Lanceolate number per complex (18.4?±?0.2) after vibration remained near sham (19.3?±?0.3), but 44.9% of lanceolate complexes were abnormal in 5 wk vibrated compared to 18.8% in sham. Interpretation The largest vibration energies are peak kHz accelerations (~?100?000?m/s2) from shock waves. The existing ISO 5349-1 standard excludes kHz vibrations, seriously underestimating vibration injury risk. The present study validates the rat-tail, impact hammer vibration as a model for investigating irreversible nerve damage. Persistence of higher denervation difference after 5-week recovery suggests repeated vibration injury destroys the capability of lanceolate nerve endings to regenerate. 

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10