Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ribadeneyra, Maria
    et al.
    Queen Mary University of London, UK.
    Grogan, Lia
    Trinity College Dublin, Ireland.
    Au, Heather
    Imperial College London, UK.
    Schlee, Philipp
    Queen Mary University of London, UK; Imperial College London, UK.
    Herou, Servann
    Queen Mary University of London, UK; Imperial College London, UK.
    Neville, Tobias
    University College London, UK.
    Cullen, Patrick
    University College London, UK.
    Kok, Matt
    University College London, UK.
    Hosseinaei, Omid
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Danielsson, Sverker
    RISE Research Institutes of Sweden, Bioeconomy and Health.
    Tomani, Per
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Titirici, M. M.
    Imperial College London, UK.
    Brett, Daniel
    University College London, UK.
    Shearing, Paul
    University College London, UK.
    Jervis, Rhodri
    University College London, UK.
    Jorge, Ana
    Queen Mary University of London, UK; .
    Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries2020In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 157, p. 847-856Article in journal (Refereed)
    Abstract [en]

    Redox flow batteries represent a remarkable alternative for grid-scale energy storage. They commonly employ carbon felts or carbon papers, which suffer from low activity towards the redox reactions involved, leading to poor performance. Here we propose the use of electrospun freestanding carbon materials derived from lignin as alternative sustainable electrodes for all-vanadium flow batteries. The lignin-derived carbon electrospun mats exhibited a higher activity towards the VO2 +/VO2+ reaction than commercial carbon papers when tested in a three-electrode electrochemical cell (or half-cell), which we attribute to the higher surface area and higher amount of oxygen functional groups at the surface. The electrospun carbon electrodes also showed performance comparable to commercial carbon papers, when tested in a full cell configuration. The modification of the surface chemistry with the addition of phosphorous produced different effect in both samples, which needs further investigation. This work demonstrates for the first time the application of sustainably produced electrospun lignin-derived carbon electrodes in a redox flow cell, with comparable performance to commercial materials and establishes the great potential of biomass-derived carbons in energy devices.

  • 2.
    Sefidari, H.
    et al.
    Luleå University of Technology, Sweden.
    Ma, C.
    Umeå University, Sweden.
    Fredriksson, C.
    LKAB, Sweden.
    Lindblom, B.
    Luleå University of Technology, Sweden; LKAB, Sweden.
    Wiinikka, Henrik
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy. Luleå University of Technology, Sweden.
    Nordin, L. O.
    LKAB, Sweden; GTT Technologies, Germany.
    Wu, G.
    GTT Technologies, Germany; Institute of Energy and Climate Research, Germany.
    Yazhenskikh, E.
    Institute of Energy and Climate Research, Germany.
    Müller, M.
    Institute of Energy and Climate Research, Germany.
    Öhman, M.
    Luleå University of Technology, Sweden; Institute of Energy and Climate Research, Germany.
    The effect of co-firing coal and woody biomass upon the slagging/deposition tendency in iron-ore pelletizing grate-kiln plants2020In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 199, article id 106254Article in journal (Refereed)
    Abstract [en]

    Woody biomass is being considered a potential co-firing fuel to reduce coal consumption in iron-ore pelletizing rotary kilns. An important consideration is the slagging inside the kiln caused by ash deposition that can lead to process disturbances or shutdowns. In terms of ash chemistry, co-firing woody biomass implies the addition of mainly Ca and K to the Si- and Al-dominated coal-ash (characteristic of high-rank coals) and Fe from the iron-ore that are both inherent to the process. An alkali-laden gaseous atmosphere is also present due to the accumulation of alkali via the recirculation of flue gas in the system. The slagging propensity of blending woody biomass with coal in the grate-kiln process was studied based on the viscosity of the molten phases predicted by global thermochemical equilibrium modeling. This was carried out for variations in temperature, gaseous KOH atmosphere, and fuel blending levels. Results were evaluated and compared using a qualitative slagging indicator previously proposed by the authors where an inverse relationship between deposition tendency and the viscosity of the molten fraction of the ash was established. The results were also compared with a set of co-firing experiments performed in a pilot-scale (0.4 MW) experimental combustion furnace. In general, the co-firing of woody biomass would likely increase the slagging tendency via the increased formation of low-viscosity melts. The fluxing behavior of biomass-ash potentially reduces the viscosity of the Fe-rich aluminosilicate melt and intensifies deposition. However, the results also revealed that there are certain conditions where deposition tendency may decrease via the formation of high-melting-point alkali-containing solid phases (e.g., leucite). 

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9