Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Françon, Hugo
    et al.
    KTH Royal Institute of Technology, Sweden.
    Wang, Zhen
    KTH Royal Institute of Technology, Sweden.
    Marais, Andrew
    KTH Royal Institute of Technology, Sweden.
    Mystek, Katarzyna
    KTH Royal Institute of Technology, Sweden.
    Piper, Andrew
    KTH Royal Institute of Technology, Sweden.
    Granberg, Hjalmar
    RISE Research Institutes of Sweden, Bioeconomy and Health, Pulp, Paper and Packaging.
    Malti, Abdellah
    KTH Royal Institute of Technology, Sweden.
    Gatenholm, Paul
    Chalmers University of Technology, Sweden.
    Larsson, Per
    KTH Royal Institute of Technology, Sweden.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Ambient-Dried, 3D-Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers2020In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, article id 1909383Article in journal (Refereed)
    Abstract [en]

    This study presents a novel, green, and efficient way of preparing crosslinked aerogels from cellulose nanofibers (CNFs) and alginate using non-covalent chemistry. This new process can ultimately facilitate the fast, continuous, and large-scale production of porous, light-weight materials as it does not require freeze-drying, supercritical CO2 drying, or any environmentally harmful crosslinking chemistries. The reported preparation procedure relies solely on the successive freezing, solvent-exchange, and ambient drying of composite CNF-alginate gels. The presented findings suggest that a highly-porous structure can be preserved throughout the process by simply controlling the ionic strength of the gel. Aerogels with tunable densities (23–38 kg m−3) and compressive moduli (97–275 kPa) can be prepared by using different CNF concentrations. These low-density networks have a unique combination of formability (using molding or 3D-printing) and wet-stability (when ion exchanged to calcium ions). To demonstrate their use in advanced wet applications, the printed aerogels are functionalized with very high loadings of conducting poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:TOS) polymer by using a novel in situ polymerization approach. In-depth material characterization reveals that these aerogels have the potential to be used in not only energy storage applications (specific capacitance of 78 F g−1), but also as mechanical-strain and humidity sensors. © 2020 The Authors. 

  • 2.
    Méhes, Gabor
    et al.
    Linköping University, Sweden.
    Vagin, Mikhail
    Linköping University, Sweden.
    Mulla, Mohammad
    Linköping University, Sweden.
    Granberg, Hjalmar
    RISE Research Institutes of Sweden, Bioeconomy and Health, Pulp, Paper and Packaging.
    Che, Canyan
    Linköping University, Sweden.
    Beni, Valerio
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Crispin, Xavier
    Linköping University, Sweden.
    Berggren, Magnus
    Linköping University, Sweden.
    Stavrinidou, Eleni
    Linköping University, Sweden.
    Simon, Daniel
    Linköping University, Sweden.
    Solar Heat-Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSS-Nanocellulose Electrodes2020In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 4, no 1, article id 1900100Article in journal (Refereed)
    Abstract [en]

    Energy harvesting from photosynthetic membranes, proteins, or bacteria through bio-photovoltaic or bio-electrochemical approaches has been proposed as a new route to clean energy. A major shortcoming of these and solar cell technologies is the underutilization of solar irradiation wavelengths in the IR region, especially those in the far IR region. Here, a biohybrid energy-harvesting device is demonstrated that exploits IR radiation, via convection and thermoelectric effects, to improve the resulting energy conversion performance. A composite of nanocellulose and the conducting polymer system poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is used as the anode in biohybrid cells that includes thylakoid membranes (TMs) and redox mediators (RMs) in solution. By irradiating the conducting polymer electrode by an IR light-emitting diode, a sixfold enhancement in the harvested bio-photovoltaic power is achieved, without compromising stability of operation. Investigation of the output currents reveals that IR irradiation generates convective heat transfer in the electrolyte bulk, which enhances the redox reactions of RMs at the anode by suppressing diffusion limitations. In addition, a fast-transient thermoelectric component, originating from the PEDOT:PSS-nanocellulose-electrolyte interphase, further increases the bio-photocurrent. These results pave the way for the development of energy-harvesting biohybrids that make use of heat, via IR absorption, to enhance energy conversion efficiency. 

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9