Change search
Refine search result
1 - 50 of 50
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Daaland Wormdahl, Espen
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Baker, Greg
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ulfsnes, Mette Kristin
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Brannsikkerhet i bygg med massivtre2017Report (Other academic)
    Abstract [no]

    I dette prosjektet er det gjennomført et litteraturstudie på brannsikkerhet ved bruk av massivtre i bygninger.   Problemstillingene det ble jobbet med var temperaturforløp i en naturlig brann, selvslokking og forkullingshastighet. Ut fra litteraturstudiet konkluderer vi med at kunnskapen om brannsikkerhet i forbindelse med massivtre i bygninger er mangelfull.  Det er spesielt rundt problemstillinger knyttet til ubeskyttet massivtre, forkullingshastigheter, delaminering og selvslokking det er flere ubesvarte spørsmål, og dette er forhold som kan ha stor innvirkning på brannsikkerheten i bygninger.   Vi anbefaler at det utarbeides retningslinjer for hvordan anvendelse av massivtre skal håndteres i prosjektering og risikoanalyse for nye bygg

  • 2.
    Eidissen Jensen, Ulla
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway .
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    The effect of fire retardants on smouldering fires in loose fill wood fibre building insulation2017Conference paper (Other academic)
    Abstract [en]

    Building insulation products produced from renewable biomass is becoming increasingly common in buildings due to environmental lifecycle requirements. Biomass insulation products are combustible and can contribute to fires through flaming and smouldering combustion. Incidents have been reported where insufficient spacing between combustible insulation and heat-producing electrical appliances has led to smouldering and subsequent development of flaming fires. Insulation materials often contain fire retardants, though their performance with regard to smouldering fire is not well understood. [1, 2] This study investigates the temperature exposure needed to initiate self-sustaining smouldering fires in loose fill wood fibre building insulation, focusing on the effect of fire retardant content and fibre size. The study is a part of the EMRIS (Emerging Risks from Smoldering Fires) project. The test set-up is shown in Fig 1a [3]. The tested material was 100 grams, 34 kg/m3 spruce wood fibre loose-fill insulation with 4 and 9 % added ammonium polyphosphate fire retardant. Tests with short, fine fibres (Fig 1b) were compared to testst with long, thin fibres. The sample was heated from below until a given temperature was obtained 20 mm above the heater. Temperature and mass loss measurements as well as visual observations of the residue after test (Fig 1c) were used to characterize the onset of self-sustained smouldering. An iterative process was used, with 5 to 8 tests per product. It was found that a high level (9 %) of fire retardant gave an onset of smoldering at lower temperatures (225 °C) compared to a low level (4 %) of fire retardant (290 °C). The lower onset temperature indicates that the insulation with the highest fire retardant content is more prone to smouldering, which is contradictory to the expected performance of the fire retardant. For the same fire retardant content, the onset of self-sustained smouldering combustion was obtained at lower temperatures in insulation materials with smaller fiber sizes than in insulation with larger fiber size (225 vs 280 °C). This study is indicative, the absolute temperatures relate to the given test set-up. Further studies should include a range of fire retardant types and content, to obtain knowledge on their effect on smouldering fires.

  • 3.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway; Otto von Guericke University Magdeburg, Germany.
    Fighting flameless fires: Initiating and extinguishing self-sustainedsmoldering fires in wood pellets2018Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Smoldering fires represent domestic, environmental and industrial hazards. This flameless form of combustion is more easily initiated than flaming, and is also more persistent and difficult to extinguish. The growing demand for non-fossil fuels has increased the use of solid biofuels such as biomass. This represents a safety challenge, as biomass self-ignition can cause smoldering fires, flaming fires or explosions.

    Smoldering and extinguishment in granular biomass was studied experimentally. The set-up consisted of a cylindrical fuel container of steel with thermally insulated side walls. The container was closed at the bottom, open at the top and heated from below by a hot surface. Two types of wood pellets were used as fuel, with 0.75-1.5 kg samples.

    Logistic regression was used to determine the transition region between non-smoldering and self-sustained smoldering experiments, and to determine the influence of parameters. Duration of external heating was most important for initiation of smoldering. Sample height was also significant, while the type of wood pellet was near-significant and fuel container height was not.

    The susceptibility of smoldering to changes in air supply was studied. With a small gap at the bottom of the fuel bed, the increased air flow in the same direction as the initial smoldering front (forward air flow) caused a significantly more intense combustion compared to the normal set-up with opposed air flow.

    Heat extraction from the combustion was studied using a water-cooled copper pipe. Challenges with direct fuel-water contact (fuel swelling, water channeling and runoff) were thus avoided. Smoldering was extinguished in 7 of 15 cases where heat extraction was in the same range as the heat production from combustion. This is the first experimental proof-of-concept of cooling as an extinguishment method for smoldering fires.

    Marginal differences in heating and cooling separated smoldering from extinguished cases; the fuel bed was at a heating-cooling balance point. Lower cooling levels did not lead to extinguishment, but cooling caused more predictable smoldering, possibly delaying the most intense combustion. Also observed at the balance point were pulsating temperatures; a form of long-lived (hours), macroscopic synchronization not previously observed in smoldering fires.

    For practical applications, cooling could be feasible for prevention of temperature escalation from self-heating in industrial storage units. This study provides a first step towards improved fuel storage safety for biomass. 

  • 4.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Studie av synlighet til høytmonterte markeringsskilt i brannrøyk2015Report (Refereed)
  • 5.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway; Otto von Guericke University Magdeburg, Germany.
    Hagen, Bjarne C.
    Western Norway University of Applied Sciences, Norway.
    Frette, Vidar
    Western Norway University of Applied Sciences, Norway.
    Synchronized smoldering combustion2018In: Europhysics letters, ISSN 0295-5075, E-ISSN 1286-4854, Vol. 121, no 5, p. 50002-p1-50002-p2Article in journal (Refereed)
    Abstract [en]

    Synchronized, pulsating temperatures are observed experimentally in smoldering fires.The entire sample volume (1.8 l) participates in the pulsations (pulse period 2–4 h). The synchronylasts up to 25 h and is followed by a spontaneous transition to either disordered combustion orself-extinguishment. The synchronization is obtained when the fuel bed is cooled to the brink ofextinguishment. Calculations for adiabatic conditions, including heat generation from combustion(nonlinear in temperature) and heat storage in sample (linear in temperature), predict divergingsample temperature. Experimentally, heat losses to surroundings (linear in temperature) preventtemperatures to increase without bounds and lead to pulsations.

  • 6.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway.
    Hagen, Bjarne Christian
    Western Norway University of Applied Sciences, Norway.
    Emerging Risks from Smoldering Fires: Results from the EMRIS project2018Conference paper (Other academic)
    Abstract [en]

    Smoldering fires represent a severe, but often overlooked danger to society. Smoldering causes major economic losses for industrial facilities with production, transport and storage of biomass and biofuels worldwide. The smoke from post-flaming residual burning on the forest floor and in peatlands represents a major contributor to greenhouse gas emissions. [1]To prevent initiation of smoldering, and facilitate safe, efficient and complete extinguishment, a better fundamental understanding of smoldering is key. This is the aim of the research project EMRIS (Emerging Risks from Smoldering Fires). The consortium consists of 6 research institutes and universities in 5 countries, coordinated by Western Norway University of Applied Sciences in Haugesund, Norway. EMRIS started in 2015 and is now in its final stage. We will here present some points of interest from the project.Materials in the study include wood pellets, other biopellets, cotton, waste (wood chips), coal, wood fiber insulation and various pyrolysis products. Both experimental and modeling work has been done.Experimental work in small-scale has studied the sensitivity of smoldering ignition to a range of parameters [2], the impact of changes in air flow on the combustion [3], the effect of fire retardant content and fiber size [4], the transition from smoldering to flaming fire [5,6], early detection of smoldering [7]and heat extraction from the fuel bed with successfulextinguishment [8,9]. In medium scale experiments, initiationand propagation of reaction fronts have been studied [10]. TheEMRIS team also studies how particulate matter fromsmoldering fires can affect large scale phenomena, such ascloud formations, climate and public health.A cellular automaton model has been found to give a realistic representation of smoldering spread [11]. The method is based on a network of cells that mimic processes taking place in the material, which is easier to program and requires less computing power than traditional tools.The EMRIS project therefore represents progress within many different aspects of fire safety science. A continuation of the project is very much of interest, we welcome interested parties to discuss with us.

  • 7.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway.
    Hagen, Bjarne Christian
    Western Norway University of Applied Sciences, Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Frette, Vidar
    Western Norway University of Applied Sciences, Norway.
    Extinguishing smoldering fires in wood pellets through cooling2017Conference paper (Other academic)
    Abstract [en]

    Extinguishing smoldering fires is a severe challenge for fire brigades, and has proven to be difficult even on the lab scale. In this study, the influence of a closed water cooling loop located within the fuel bed was investigated experimentally. Increasing the cooling led to a system less prone to intense combustion at an early stage, and eventually to complete extinguishment of self-sustained smoldering fires. Extinguishment was obtained in half of the cases with maximum cooling. Extinguishment occurred soon after smoldering had been established, giving a significant reduction in fuel consumption compared to the self-sustained smoldering fires that continued to complete burn-out.

  • 8.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Sciences, Norway.
    Hagen, Bjarne Christian
    Western Norway University of Applied Sciences, Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Frette, Vidar
    Western Norway University of Applied Sciences, Norway.
    Smoldering combustion- from pulsations to extinguishment2017Conference paper (Other academic)
    Abstract [en]

    Smoldering is known as a slow, but unpredictable form of combustion. In this study we have looked at how smoldering is affected by water cooling of the fuel bed without direct contact between fuel and water flow. The study is a part of the EMRIS project, and its findings have possible implications for preventing and suppressing fires in industrial storage units.

  • 9.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Western Norway University of Applied Science, Norway; Otto von Guericke University Magdeburg, Germany.
    Hagen, Bjarne Christian
    Western Norway University of Applied Science, Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Krause, Ulrich
    Otto von Guericke University Magdeburg, Germany.
    Frette, Vidar
    Western Norway University of Applied Science, Norway.
    Extinguishing Smoldering Fires in Wood Pellets with Water Cooling: An Experimental Study2019In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 25, no 1, p. 257-284Article in journal (Refereed)
    Abstract [en]

    Smoldering fires in stored or transported solid biofuels are very difficult to extinguish. The current study has explored heat extraction from the combustion zone as a method for extinguishing such flameless fires. Heat extraction from the sample was made feasible using water flowing through a metal pipe located inside the sample. The fuel container was a steel cylinder with insulated side walls, open at the top and heated from below. Wood pellets (1.25 kg, 1.8 l) was used as fuel. Results from small-scale experiments provide proof-of-concept of cooling as a new extinguishing method for smoldering fires. During self-sustained smoldering with heat production in the range 0 W to 60 W, the heat loss to the cooling unit was in the range 5 W to 20 W. There were only marginal differences between non-extinguished and extinguished cases. Up-scaling is discussed, cooling could be feasible for preventing smoldering fires in silos.

  • 10.
    Gjøsund, G.
    et al.
    NTNU, Norway.
    Almklov, P. G.
    SINTEF, Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    False alarm?: Effects of reducing unnecessary dispatches by fire and rescue services2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 181-188Conference paper (Refereed)
    Abstract [en]

    Fire and rescue services in Norway dispatch more often to false and unnecessary alarms than to real fires and accidents. In 2016, 60% of the emergency dispatches were conducted on the basis of false or unnecessary alarms. These unnecessary dispatches are costly in terms of time and resources spent, and can in some cases lead to a weakened preparedness towards real incidents. Also, the risk for traffic accidents increases when big vehicles rush through the streets on their way to where the alarm was triggered. Hence, there are good reasons to work to reduce the number of these kind of dispatches. On the other hand, one may also argue that there can be some positive effects of a certain number of mobilizations for the fire crews. Based on interviews with relevant actors connected to fire and rescue services, as well as on statistics collected through the BRIS reporting system, we will discuss possible consequences of reducing the number of false and unnecessary alarms and potential effects of implementing measures for decreasing unnecessary dispatches.

  • 11.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fullskalatest av deteksjon av brann i fasade med varmedetekterende kabel og flammedetektor2017Report (Other academic)
    Abstract [no]

    I denne rapporten presenteres en fullskalatest gjennomført 31. januar 2017 der målet var å finne ut hvor stor brannen blir før den blir detektert av en varmedetekterende kabel montert i et stålrør og en flammedetektor.  Flammedetektoren detekterte brannen umiddelbart etter antenning i det oppsettet som ble testet. Den varmedetekterende kabelen montert i stålrør detekterer ikke brannen før brannen hadde spredt seg helt til røret.

  • 12.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Slokkeanlegg i kombinasjon med tidlig deteksjon i korridor2017Report (Other academic)
    Abstract [no]

    Det er utviklet en testprotokoll basert på CEN/TS 14972:2011 og gjennomført en testserie for å teste detektorsystemer og forvarselsslokkeanlegg for bruk i korridorer som benyttes til opphenging av klær på skoler . Det er testet tre ulike detektorsystemer som har vist seg å fungere godt med de riktige innstillingene, men det er stor variasjon på deteksjonstid når innstillingene endres. Av slokkesystemene tilfredsstiller vanntåkesystemet fra Prevent Systems med Prev3exp-dyser og sprinkleranlegget fra Tyco med veggdyser av typen TY1334 kriteriene i testprotokollen.   Det er også gjennomført en fribranntest som viser hvor viktig det er å gjennomføre tiltak for å detektere og kontrollere brann i rømningsveier da forholdene i korridoren raskt gjør det vanskelig å rømme.

  • 13.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with2017Report (Other academic)
    Abstract [en]

    This report presents a full-scale test carried out 31 January 2017 in which the objective was to find out how much the fire progresses before it is detected by a heat detection cable mounted in a steel pipe, and a flame detector.  In the setup being tested the flame detector detected the fire almost immediately after ignition. The heat detection cables mounted in steel pipes did not detect the fire until it had spread all the way to the pipes.

  • 14.
    Hox, Kristian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sæter Bøe, Andreas
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Slokkemetoder med lite vann2017Report (Other academic)
    Abstract [no]

    SP Fire Research har i samarbeid med Direktoratet for samfunnssikkerhet og beredskap (DSB), Regionalt forskningsfond Midt-Norge og Norsk brannbefals landsforbund (NBLF), utført et prosjekt for å få en bedre kunnskapsoversikt over nye slokkeverktøy både med hensyn på effekt, og hvor utbredt de er. Gjennom ulike aktiviteter kan prosjektet konkludere med følgende:Resultater fra en spørreundersøkelse avdekker at brannvesen i Norge har god kjennskap til nye slokkeverktøy, som CAFS og skjærslokker, men de blir i liten grad benyttet. Dette kan til en viss grad knyttes opp mot utilstrekkelig opplæring og manglende erfaring med utstyret. Videre indikerer tester at utvendig slokkeinnsats kan senke temperaturen i et brannrom betydelig, og eventuelt slokke brannen, dersom denne innsatsen blir utført i nærheten av brannen. Skjærslokkeren ble vurdert til å være det beste alternativet for å håndtere hulromsbranner. Resultatene viser også at det er mulig å designe gode testmetoder for å sammenligne ulike slokkerverktøy.

  • 15.
    Nordløkken, Per Gunnar
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Wormdahl, Espen D.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Energibesparende bygg og brannsikkerhet2015Report (Other academic)
  • 16.
    Pursiainen, C.
    et al.
    UiT Arctic University of Norway, Norway.
    Rød, B.
    UiT Arctic University of Norway, Norway.
    Baker, Greg
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Honfi, Daniel
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lange, David
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Critical infrastructure resilience index2016In: Critical infrastructure resilience index, 2016, p. 355-Conference paper (Refereed)
    Abstract [en]

    In the recent years, the focus has moved from critical infrastructure protection to that of resilience. But how do we know whether a critical infrastructure is resilient or not, how can it be evaluated, measured and enhanced?

  • 17.
    Reitan, Nina Kristine
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Bouffier, C.
    INERIS Institut National de l’Environnement Industriel et des Risques, France.
    Durgun, Özüm
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Guay, F.
    DBI Danish Institute of Fire and Security Technology, Denmark.
    Ioannou, I.
    University College London, UK.
    Mira da Silva, M.
    University of Lisbon, Portugal.
    Petersen, L.
    EMSC European-Mediterranean Seismological Centre, France.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Theocharidou, M.
    European Commission Joint Research Centre, Italy.
    Vigh, L. G.
    Budapest University of Technology and Economics, Hungary.
    Infrastructures facing disaster risk: Pilot implementation of a new resilience management framework2017Conference paper (Other academic)
  • 18.
    Rosenqvist, H.
    et al.
    Danish Institute of Fire and Security Technology, Denmark.
    Reitan, Nina Kristine
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Petersen, L.
    EMSC, France.
    Lange, Daniel
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    ISRA: IMPROVER societal resilience analysis for critical infrastructure2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 1211-1220Conference paper (Refereed)
    Abstract [en]

    Resilience of Critical Infrastructure (CI) has been a research focus for several years now, with efforts being made to develop methods for the analysis and assessment of CI resilience. However, these efforts are often carried out without consideration of enriching societal risk or resilience assessments with knowledge of the resilience of CI. Bearing in mind that the definition of CI according to the EU reflects the fact that it exists to deliver vital societal functions, the consideration of its resilience in isolation of the community it serves is only addressing part of the problem. The Horizon 2020 project IMPROVER has already developed methodologies for assessing and managing CI resilience. This paper proposes an evolution of the management framework for CI resilience which enriches societal resilience assessment with knowledge of the CI resilience. The framework and societal resilience analysis methodology are both described along with an application of the analysis method.

  • 19. Sazegara, Shaz
    et al.
    Spearpoint, Michael
    Baker, Greg
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Benchmarking the Single Item Ignition Prediction Capability of B-RISK Using Furniture Calorimeter and Room-Size Experiments2017In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 53, no 4, p. 1485-1508Article in journal (Refereed)
    Abstract [en]

    This paper benchmarks B-RISK’s capability to predict item ignition in multiple object compartment fire simulations. A series of fire experiments have been conducted which measured single item ignition times under the furniture calorimeter and in the ISO 9705 room. These experiments used mock-up armchair, TV and cabinetry furniture items created from three common materials found in most households in New Zealand exposed to a 100 kW gas burner flame. B-RISK uses the flux-time product (FTP) method as the criterion to predict ignition of items, based on radiation received using the point source model (PSM). This paper presents an analysis of the B-RISK predictions compared to the experimental measurements. Due to the mathematical formulation of the PSM and FTP method, it is found that the predicted ignition time is sensitive to the distance between the radiative source and the item. Predicted ignition times of armchairs constructed of polyurethane foam were within 14% of the ISO 9705 room experimental results. However, for the furniture calorimeter experiments it is found that to get reasonable predictions of the ignition times for the mock-up armchair and TV items there is a need to account for the burner flame movement by adjusting the radial distance by 10–30 mm. Direct flame contact was required to ignite the mock-up cabinetry items and B-RISK was unable to successfully predict this ignition time.

  • 20.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Evergren, Franz
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Brannsikkerhet ved bruk av gassbeholdere i bygg2018Report (Refereed)
    Abstract [no]

    Denne rapporten er utarbeidet på oppdrag fra Direktoratet for samfunnssikkerhet og beredskap (DSB). DSB har bedt RISE Fire Research om å bistå med evalueringer knyttet til bruken av gassbeholdere ved serveringssteder, overnattingssteder og forsamlingslokaler.

  • 21.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjær, Sindre
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Mapping of gas concentrations, effect of deadair space and effect of alternative detection technology in smouldering fires2016Report (Other academic)
    Abstract [en]

    Eight out of ten fire-related fatalities occur in dwellings. It is a fact that smoke detectors save lives, which emphasizes the importance of every home having a functioning smoke detector. In Norway, smoke detectors in dwellings are mandatory, and recommendations on which detector technology to use and the position of the detectors are given. Smoke detectors should be installed on the ceiling, outside of dead-air space (close to walls). In this study, ten smouldering fire experiments have been conducted to: • investigate if smoke detectors with CO sensing can alert residents at an earlier stage than photoelectric smoke detectors, consequently increasing chances of egress and survival for a sleeping person. • measure concentrations of toxic gases in a room where a smouldering fire occurs and investigate if tenability limits are exceeded when n photoelectric smoke detector is activated. • investigate if smoke detectors placed within dead-air space are activated at a later stage than smoke detectors placed according to the recommendations.

  • 22.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Røykvarslere for bruk i bolig: Kartlegging av forskningsfront2012Report (Other academic)
    Abstract [no]

    I byggeforskrift av 1985 ble det innført krav til røykvarslere i nye boliger. I Forskrift om brannforebyggende tiltak og brannsyn (FOBTOB) av 1990, ble det i tillegg innført krav om røykvarslere i eksisterende boliger.

     

    Et litteraturstudium har blitt gjennomført for å kartlegge teknologistatus for røykvarslere i boliger. Det er lagt vekt på hvilken forskning og utvikling som er gjort med tanke på røykvarslere for boliger siden år 2000. Hvilke deteksjonsprinsipper kan benyttes, og kan ny teknologi gjøre detektorene bedre?

     

    Rapporten oppsummerer litteraturstudiet, innenfor forskjellige fokusområder, og gir i tillegg forslag til videre forskning på temaet.

  • 23.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Reitan, Nina Kristine
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Investigation of the use of smoke alarms in Norwegian dwellings2016Conference paper (Refereed)
    Abstract [en]

    A survey mapping the use of smoke alarms and residents’ awareness of their legal obligations for protecting their dwellings with smoke alarms has been carried out. A total of 628 individual households geographically distributed throughout Norway were included in this study. The results demonstrated that factors such as level of education, age, gender, and if the dwelling is owned or rented by the resident, affects the awareness and compliance with the regulations and recommendations for the use of smoke alarms in dwellings.

  • 24.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Reitan, Nina Kristine
    Fjær, Sindre
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Kartlegging av gasskonsentrasjoner, effekt av dødluftsrom og effekt av alternativt deteksjonsprinsipp ved ulmebrann2015Report (Other academic)
    Abstract [no]

    Åtte av ti som omkommer i brann dør i hjemmet. Det er stadfestet at røykvarslere redder liv, noe som understreker hvor viktig det er at alle hjem har fungerende røykvarsler. I Norge er det krav om at fungerende røykvarsler er installert i alle boliger, og det er også gitt anbefalinger om deteksjonsprinsipp og plassering av røykvarslere. Det er anbefalt å benytte optiske røykvarslere fremfor ioniske, og at disse monteres i tak, utenfor dødluftsrom (nær vegg). I denne studien er det utført ti forsøk med ulmebrann i et testrom innredet med en seng for å: • undersøke om røykdetektorer med CO-sensor kan varsle beboer på et tidligere tidspunkt enn optiske detektorer, og følgelig øke sjansene for evakuering. • kartlegge nivået av giftige gasser i et rom hvor ulmebrann oppstår, og undersøke om grenseverdiene for forgiftning er overskredet når en tradisjonell, optisk røykvarsler går til alarm. • undersøke om røykdetektorer som er plassert i dødluftsrom reagerer tregere enn detektorer som er plassert i henhold Norsk brannvernforenings anbefalinger.

  • 25.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analyse av dødsbranner i Norge i perioden 2005 - 20142017Report (Other academic)
    Abstract [no]

    I denne studien er informasjon fra brannstatistikk og andre kilder fra perioden 2005 – 2014 analysert, for å få mer detaljert kunnskap om hvem som omkommer i brann og hvorfor de omkommer. Dermed kan tiltak iverksettes mer målrettet for å redusere antall omkomne.  Følgende spørsmål er forsøkt besvart i studien: 1. Hvilke risikofaktorer forbindes med de som omkommer i branner i Norge? 2. Hva er årsakene til dødsbranner i Norge? 3. Hvordan kan dødsbranner best forebygges?  I den aktuelle perioden er det registrert 517 branner med 571 omkomne. Vi har kartlagt informasjon fra 347 politirapporter, identifisert 387 omkomne og trukket ut informasjon fra pasientjournalene til 248 av de omkomne.

  • 26.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of 985 fire incidents related to oil- and gas production  on the Norwegian shelf2018In: Safety and Reliability: Safe Societies in a Changing World / [ed] Stein Haugen, Anne Barros, Coen van Gulijk, Trond Kongsvik, Jan Erik Vinnem, 2018, Vol. 1, p. 1847-1854Conference paper (Refereed)
    Abstract [en]

    Fire is a major threat in the petroleum industry. However, little has been published about the fire related incidents that have occurred in the Norwegian petroleum sector. To gain more knowledge, data from 985 incidents in the 1997 - 2014 period has been analysed. Examples of factors studied are type of facility involved, involved area or system, consequences and severity level. The analysis of the fire incidents reveals that even though many incidents are reported, the large majority of these have not imposed risks for severe fire accidents. It has also provided valuable information regarding possible dangerous situations, commonly in-volved areas, types of equipment as well as types of activity that were involved. Twenty-nine percent of the incidents were false alarms, which must be regarded as a high number in an industry where any production stop could be extremely costly.

  • 27.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of 985 fire incidents related to oil-and gas production on the Norwegian continental shelf2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 1847-1854Conference paper (Refereed)
    Abstract [en]

    Fire is a major threat in the petroleum industry. However, little has been published about the fire related incidents that have occurred in the Norwegian petroleum sector. To gain more knowledge, data from 985 incidents in the 1997–2014 period has been analysed. Examples of factors studied are type of facility involved, involved area or system, consequences and severity level. The analysis of the fire incidents reveals that even though many incidents are reported, the large majority of these have not imposed risks for severe fire accidents. It has also provided valuable information regarding possible dangerous situations, commonly involved areas, types of equipment as well as types of activity that were involved. Twenty-nine percent of the incidents were false alarms, which must be regarded as a high number in an industry where any production stop could be extremely costly.

  • 28.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of fatal fires in Norway in the 2005 – 2014 period2017Report (Other academic)
    Abstract [en]

    In this study, information from fire statistics and other sources has been analyzed to get more detailed knowledge than before about who dies in fires and why. This will help to implement more targeted measures in order to reduce the number of people perishing in fires.  The study attempted to answer the following questions: 1. What risk factors are associated with those who perish in fires in Norway? 2. What are the causes of fatal fires in Norway? 3. How can fatal fires best be prevented?  A total of 517 fires with 571 fatalities are registered in the official fire statistics in the 2005 – 2014 period. We have examined 347 police investigation reports, identified 387 deceased and  extracted information from 248 medical records.

  • 29.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of fatal fires in Norway over a decade, – A retrospective observational study2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 2837-2844Conference paper (Refereed)
    Abstract [en]

    Five-hundred-and-seventy-one fatalities were registered in the official fire statistics in Norway between 2005–2014. However, little is known about the victims. This study collected information from several sources to build a holistic database and gain more knowledge about the technical and social aspects of the incidents, forming a basis for more targeted measures. Human behaviour greatly affects the risk of fire, which supports why social aspects of incidents should be considered when identifying risk factors associated with the victims. The results showed a clear distinction between victims above and below the age of 67 with respect to risk factors. For the elderly, reduced mobility, impaired cognitive ability, mental disorders and smoking were observed risk factors. For the younger victims known substance abuse, mental illness, alcoholic influence and smoking were observed, mostly in combination. This shows that fire is a social problem, and should be prevented by initiating customised measures

  • 30.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Wighus, Ragnar
    RISE - Research Institutes of Sweden, ICT, Viktoria.
    Evaluering av brannen i BASA-Huset, Tønsberg2016Report (Refereed)
    Abstract [no]

    Torsdag 23. juli 2015 brøt det ut brann i BASA-Huset i Tønsberg. BASA-Huset var et næringsbygg hvor ca. 70 firma hadde tilhold. Størsteparten av bygget brant ned, og forsikringserstatningene er anslått til å være i størrelsesorden flere hundre millioner kroner. Direktoratet for samfunnssikkerhet og beredskap og Direktoratet for byggkvalitet har bedt SP Fire Research om å evaluere brannen med tanke på hvorfor brannen ble så stor som den ble, og hvilke nasjonale læringspunkt som kan dras ut av hendelsen.

  • 31.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    Stensaas, Jan P.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hva kan vi lære av brannen i Lærdal i januar 2014?: Vurdering av brannspredningen2014Report (Refereed)
  • 32.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Utredning - branntekniske ytelser for kledninger og overflater2018Report (Other academic)
    Abstract [en]

    The Norwegian Building Authority (DiBK) has asked RISE Fire Research to review the preaccepted fire performances for coverings and linings in the guidelines to the Norwegian building regulations. Requirements for both interior and exterior coverings and surfaces(façades) have been evaluated.

    The review is based on a study of previous and existing Norwegian building regulations, and in addition, we have also examined how the classes for coverings and linings are applied and interpreted in the Swedish and Danish building regulations.

    Today's pre-accepted fire performance, class B-s3, d0, for exterior cladding including a cavityon facades is evaluated, based on the British investigations after the fire in Grenfell Tower inLondon in June 2017. A simple assessment of how the façade systems that were tested according to the British standard BS 8414-1 probably would behave if tested according to the method SP FIRE 105.The report concludes with several recommendations on revision of the text in the guidelines to the building regulations TEK17 intended to prevent misunderstandings regarding the fire regulations for coverings and linings.

  • 33.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Stord/Haugesund University College, Norway.
    Jensen, Ulla Eidissen
    NTNU Norwegian University of Science and Technology, Norway.
    Smouldering Combustion inLoose-Fill Wood Fibre Thermal Insulation: An Experimental Study2018In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 54, no 6, p. 1585-1608Article in journal (Refereed)
    Abstract [en]

    A bench-scale experimental setup has been used to study the conditions necessary

    for smouldering ignition in four types of loose-fill wood fibre thermal insulation, and

    to study the development of the smouldering process. The products varied with regard to

    wood species, grain size and fire retardant chemical additives. The test material was

    placed in an insulated open top container and heated from below. Temperatures within

    the sample and mass loss were measured during the tests. Both the fibre size and the level

    of added fire retardant seem to influence the smouldering ignition. Two different types of

    smouldering were identified in this study. Materials undergoing smouldering Type 1

    obtained maximum temperatures in the range 380C to 440C and a total mass loss of

    40 wt% to 50 wt%. Materials undergoing smouldering Type 2 obtained maximum temperatures

    in the range 660C to 700C and a total mass loss of 80 wt% to 90 wt%. This

    implies that Type 2 smouldering involves secondary char oxidation, which represents a

    risk for transition to flaming combustion and thereby a considerable fire hazard. This has

    been an exploratory project and the results must therefore be considered as indicative.

    The findings may, however, have implications for fire safety in the practical use of loosefill

    wood fibre insulation in buildings, and further experimental studies should be performed

    with this in mind to obtain more knowledge about the topic.

  • 34.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Recommendations for documentation of  reaction-to-fire properties of materials offshore2017Report (Other academic)
    Abstract [en]

    This report presents a set of recommended reaction-to-fire test methods and related criteria for different construction products and furnishing products for use on offshore petroleum industry facilities.   The principle reaction-to-fire properties that will be critical for fire development are  heat release  smoke production  production of toxic smoke  spread of flames  production of burning droplets/debris.  The test methods presented in this report documents one or several of these properties for a range of different products

  • 35.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    Metode for evaluering av branner2015Report (Other academic)
    Abstract [no]

    Denne rapporten beskriver en enkel metode som kan anvendes ved mindre omfattende evalueringer av branner. Med metode menes her en systematikk for gjennomføring av evalueringer. En mindre omfattende evaluering vil være en gjennomgang der det enten er få forhold ved brannen som skal undersøkes, eller der situasjonen er relativt oversiktlig. Metoden er deretter anvendt på en brann i et sykehjem. Evalueringen av denne hendelsen er ikke fullstendig gjennomført, men fungerer som et eksempel på hvordan metoden kan brukes.

  • 36.
    Stensaas, Jan P.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    Kartlegging av forskningsstatus innen brannetterforskning2015Report (Other academic)
    Abstract [no]

    I dette prosjektet er det gjennomført et litteraturstudium der vi har kartlagt forskningsstatus innen utvalgte tema innenfor brannetterforskning. Det er gjennomført søk i aktuelle litteraturdatabaser for nasjonale og internasjonale publikasjoner, og i annen relevant faglitteratur som bøker og rapporter. Utvalgte relevante forskningsinstitusjoner og fagmiljøer er også kontaktet for å undersøke status innenfor de aktuelle temaene. Følgende prioriterte emner er undersøkt: • Brennbare væsker • Antennelse ved gnister, glør og varme partikler • Batterier • Selvantennelse

  • 37.
    Stolen, Reidar
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Heat flux in jet fires: New method for measuring the heat flux levels of jet fires2018Conference paper (Other academic)
    Abstract [en]

    Jet fires are ignited leakages of pressurized liquid or gaseous fuel. In jet fire testing for the offshore industry, heat flux is the defining factor for the accidental loads. NORSOK S001 [1] defines two different heat flux levels of 250 kW/m2 and 350 kW/m2 depending on the leak rate of hydrocarbons. These heat flux levels are used in risk analysis and define what type of fire load bearing structures and critical equipment need to be able to resist in a given area. Examples of such ratings can be “250 kW/m2 jet fire for 60 minutes”, “350 kW/m2 jet fire for 15 minutes” or any other combination based on calculations in the risk assessment. Combined with critical temperatures this defines the performance criteria for the passive fire protection. Each configuration of the passive fire protection needs to be tested and verified. Manufacturers of passive fire protection request fire tests to document their performance against jet fires with these various heat flux levels. The challenge is that the standard for testing passive fire protection against jet fires [2] does not define any heat flux level or any method to define or measure it. We have developed a method for defining and measuring the heat flux levels in jet fires. This method can be used when faced with the challenge of testing passive fire protection against specific levels of heat flux. The method includes a custom test rig that allows jet fire testing with different heat flux levels. A large number of tests have been performed to verify the reproducibility and repeatability of the method. Heat flux is defined as the flow of energy through a surface. The heat flux from a fire to an engulfed surface of an object is dependent on both the engulfing flame and the properties of the surface. The properties of the surface may change during the exposure to the flame as it heats up and changes its surface properties. At some point the object inside the flame will reach a thermal equilibrium with the flame where the net flow of energy into the object is balanced by the energy emitted from the object. The heat flux for an object can be calculated as incident heat flux, emitted heat flux or net heat flux. A definition of heat flux needs to include parameters of the receiving object. These variations give a lot of degrees of freedom when calculating heat flux in a fire. Special water cooled gauges are designed to measure heat flux to a cooled surface, but these have proved to be very unreliable when placed inside a large fire. A more robust and easily defined method is to measure the equilibrium temperature inside an object placed inside the flame. This is the principle used in plate thermocouples used in fire resistance furnace testing [3]. In our experience, these plate thermocouples are often damaged during high heat flux jet fire tests. This raises questions to how long into the tests such measurements are reliable. Several other types of objects have been tested and the most convenient and reliable type was found to be simply a small 8 mm steel tube that is sealed in the end and has a thermocouple inside. One key difference between this small tube thermocouple and the plate thermocouple is that the plate thermocouple is directional and the tube is omnidirectional. Current works and tests will optimize the measuring objects in order to get the most relevant equilibrium temperature while still maintaining the robustness of the sensor during the test. The suggested heat flux calculation is to follow the Stefan-Boltzmann relation of temperature and heat flux. For a black body this gives 350 kW/m2 for 1303 °C and 250 kW/m2 for 1176 °C. A lower emissivity may be defined for the surface of the sensing object giving higher temperatures for the same flux levels. This method gives a simple, robust and reproducible correlation between heat flux levels and temperatures that can be measured during jet fire tests. The method does not differ between the varying convective and radiative heat transfer in the flame, but it is a representative measurement for the temperature that an object would reach when placed inside the flame.

  • 38.
    Stolen, Reidar
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stensaas, Reidar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Solcelleteknologi og brannsikkerhet2018Report (Other academic)
    Abstract [en]

    The use of photovoltaic (PV) technology in Norway is increasing. In this study, fire safety challenges of PV technology are studied. Fire ignition, fire spread and fire extinguishing are investigated. The study forms a knowledge base for safeguarding fire safety during assembly, operation and during firefighting efforts, and to form unified and clear regulations. The results show:

    Fire ignition: PV installations contain many electric connections which can be potential ignition sources, as well as a small volume of combustible materials. These provide everything needed to initiate a fire. It is important that all connections in a PV installation are robust and can withstand the stress they are exposed to throughout their lifetime, without causing malfunction that could cause a fire.

    Fire spread: For building attached photovoltaics, there are cavities between the module and the building. If there is a fire in this cavity, the produced heat could be trapped, which could lead to a more rapid and extensive fire spread than if the building surface were uncovered. In large scale tests with PV modules mounted on a roof covering, the fire spread under the whole area covered with modules, but stopped when approaching the edge. This demonstrates the importance of sectioning when mounting PV installations, to avoid fire spread to the whole roof. An option is to use materials with limited combustibility as roof covering below the PV module, to withstand the increased heat exposure from the PV modules. The cavity between module and building could potentially also alter the air flow along the building, which in turn could affect the fire spread.

    Firefighting: Firefighters need information on whether there is a PV installation in the building, and where there are electrical components. During firefighting efforts, the fire service must consider the danger of direct contact, and danger of arcs and other faults that could lead to new ignition points. Fresh water can be used as an extinguishing agent. This must be applied from at least 1 meter distance with spread beam and at least 5 meters distance with a focused beam. PV modules can complicate fire extinguishing as they represent a physical barrier between the fire fighter and the area to extinguish, and by creating areas which should be avoided due to danger of components with voltage. When these points are considered, building attached photovoltaics should not be a problem.

    Further work: For building attached photovoltaics, there is little research on vertical mounting (on facades), and on how changed fire dynamics could affect fire spread and extinguishing. Also, today there is an increasing use of building integrated photovoltaics, which could potentially give many new challenges for fire safety and for regulations, as these are a part of the building and at the same time electrical components. German statistics indicate that there is an increased fire risk for these types of installations, compared to building attached photovoltaics, making this an important focus area for further work.

  • 39.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    Optisk varsling – Veiledningstekst2016Report (Refereed)
    Abstract [no]

    Denne rapporten er utarbeidet på oppdrag fra Direktoratet for byggkvalitet (DiBK) og Direktoratet for samfunnssikkerhet og beredskap (DSB). Prosjektet har bakgrunn i at DiBK har mottatt et endringsforslag til eksisterende tekst i VTEK § 11-12, annet ledd annet ledd bokstav a, preaksepterte ytelser punkt 4. Teksten omhandler optisk varsling som en del av et brannalarmanlegg.

  • 40.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Bøe, Andreas G.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stolen, Reidar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Gjøsund, Gudveig
    NTNU Norwegian University of Science and Technology, Norway.
    Halvorsen, Kristin
    NTNU Norwegian University of Science and Technology, Norway.
    Almklov, Petter G.
    NTNU Norwegian University of Science and Technology, Norway.
    Rett tiltak på rett sted: Forebyggende og målrettede tekniske og organisatoriske tiltak mot dødsbranner i risikogrupper2015Report (Other academic)
    Abstract [no]

    Personer som på ulike måter kan kategoriseres som sårbare, er overrepresentert i dødsbrannstatistikken. Derfor er det viktig å finne fram til effektive og målrettede tiltak som kan forhindre framtidige dødsbranner der personer som tilhører det som omtales som sårbare grupper er involvert. I rapporten brukes en helhetlig analytisk tilnærming som skal fange opp mangfoldet av dimensjoner som kan påvirke forebygging av dødsbrann, og hvordan disse virker i samspill med hverandre. Prosjektet har operert med en forståelse av sårbarhet som inkluderer både det fysiske miljøet, de menneskelige behovene og de sosiale og organisatoriske omgivelsene. En del av rapporten retter seg mot tekniske løsninger som kan brukes for å forbedre brannsikkerheten til sårbare grupper. Det har vært et mål å finne ut hvordan organisatoriske og tekniske tiltak kan brukes og ses i sammenheng, og hvordan tekniske tiltak kan implementeres, vurderes og dokumenteres.

  • 41.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ishol, Herbjörg M.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Rømning i brann: funksjonen til ulike visuelle ledesystemer2014Report (Refereed)
  • 42.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ishol, Herbjørg M.
    SWECO, Sweden.
    Utredning i forbindelse med brannvesenets dimensjonering2017Report (Other academic)
    Abstract [no]

    Denne rapporten er utarbeidet på oppdrag fra Direktoratet for samfunnssikkerhet og beredskap (DSB). DSB har bedt RISE Fire Research om å bistå med evalueringer i forbindelse med utarbeidelse av forslag til revidert forskrift for organisering og dimensjonering av brann- og redningsvesenet.   Prosjektet har hatt som målsetting å evaluere spesifikke problemstillinger relatert til: 1. Responstid og innsatstid 2. Dimensjonering av beredskap a. Størrelse på samlet innsatsstyrke samt oppmøte b. Vaktberedskap – dagkasernering  3. Dimensjonering av beredskap – vaktlag og støttestyrke med hensyn til såkalt "fremskutt enhet"

  • 43.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Reitan, Nina Kristine
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sjöström, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Rød, B.
    UiT The Arctic University of Norway, Norway.
    Guay, F.
    INOV INESC Inovação, Portugal.
    Almeida, R.
    Danish Institute of Fire and Security Technology, Denmark.
    Theocharidou, M.
    European Commission, Italy.
    Novel methodologies for analysing critical infrastructure resilience2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 1221-1230Conference paper (Refereed)
    Abstract [en]

    In the field of Critical Infrastructures (CI), both policy and research focus has shifted from protection to resilience. The IMPROVER project has developed a CI resilience management framework (ICI-REF), applicable to all types of CI and resilience domains (technological, organisational and societal) allowing operators to understand and improve their resilience. IMPROVER has also developed methodologies to be used within the framework, accompanied with resilience indicators for operators to assess their technological and organisational resilience. The framework allows CI operators to incorporate resilience management as part of their risk management processes. The ICI-REF, the resilience analysis methodologies and indicators have been optimised, applied and demonstrated in a pilot implementation, focusing on the potable water supply in Barreiro, Portugal. Conclusions from the operators so far are that the indicators, well-defined and unambiguously described, are crucial for monitoring resilience activities, to ensure objective, consistent, repeatable and representative results from the assessed processes.

  • 44.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fire fatalities in Norway: An analysis of 350 fires from 2005 to 20142017Conference paper (Other academic)
  • 45.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Recommendations for documentation of reaction-To-fire properties of materials in the oil and gas industry2017In: 15th International Conference and Exhibition on Fire and Materials 2017, 2017, p. 778-789Conference paper (Refereed)
    Abstract [en]

    This paper presents a set of recommended reaction-To-fire test methods and related criteria for different construction products and furnishing products for use on offshore petroleum industry facilities. The system was first developed and published in 2008, as a response to performance based fire safety regulations. It has since then been extensively used by petroleum companies operating on the Norwegian shelf. The recommendations have been revised and updated recently to take revisions and developments of regulations, standards and test methods into account. These recommendations can be used as a part of the risk management system where the fire safety in high risk application areas shall be controlled, and are not limited to application of materials on facilities in the offshore petroleum industry only.

  • 46.
    Säter Böe, Andreas
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    BRAVENT – Delrapport 2 ; Brannspredning i ventilasjonskanaler2019Report (Other academic)
    Abstract [en]

    This is sub-report 2 of the BRAVENT project (Fire and smoke distribution in ventilation ducts) which presents results from experiments where the risk of spreading fire and heat in ventilation ducts has been investigated. In the experiments, the effect of fire insulation on the duct, and mixing hot smoke with air at room temperature in the duct (as from adjacent rooms) has been investigated. The ventilation duct was connected to a furnace at one end and a fan at the other end. The furnace was heated to the desired temperature, and hot smoke was drawn through the duct at a certain velocity. Thermocouples measured the temperature both inside the duct (smoke gas temperatures) and on the duct’s external surface at different distances from the furnace.

  • 47.
    Säter Böe, Andreas
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stensaas, Jan Paul
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    BRAVENT – Delrapport 1 : Teori- og kunnskapssammenstilling2019Report (Other academic)
    Abstract [en]

    Recently questions about whether spread of heat and smoke in ventilation ducts during a fire represent an increased risk for personal safety and loss of properties have been raised. The technical solutions currently used to fulfill the pre-accepted performance given in the guidelines to the building regulations with regard to fire protection of ventilation ducts are largely based on descriptions in SINTEF's Building Design Sheet 520.352 on fire- and smoke protection of ventilation systems, and in BV Netts Guide for fireproof ventilation, also known as the BVNett Guide. This topic was once again raised in connection with the revision of the 2017 edition of the building regulations, when it was pointed out in inquiry statements that the pre-accepted performances are insufficiently defined and that the solutions outlined in the Building Design Sheet and the BVNett Guide are not sufficiently documented.

    In order to elucidate this topic and provide scientific documentation on the extent to which the spread of heat and smoke in ventilation ducts represents a risk to persons and properties, the BRAVENT project (Fire and smoke spread in ventilation ducts) was initiated.

    The project investigates issues related to heat dissipation in ventilation ducts, clogging of filters in ventilation systems due to smoke, the effect of the seal-up strategy with respect to pressure build-up in the fire room and smoke spread through leakages in the construction.

    The objective of the sub-task presented in this report was to:

    Compile a theoretical basis for the experiments and analyzes to be carried out.

    1. Map relevant regulations for fire protection of ventilation systems.

    2. Map standards that are the basis for determining the fire resistance of components included in a ventilation system.

    3. Map the state-of-the-art regarding a. the need to fire insulate ventilation ducts.

    b. the need to install bypass channels to prevent the filter systems from being clogged by smoke particles.

    c. the effect of installing fire dampers in all fire-partitions with respect to smoke spread.

    d. how smoke can be spread via ventilation ducts and leaks in the building structure.

    e. the pros and cons of seal-up and extraction strategies.

    © RISE Research Institutes of Sweden

    This is sub-report 1, which summarizes the relevant, fire-related theory and state-of-the-art in the focus area. The report serves as the theoretical basis for planning of experiments and for the other activities in the BRAVENT project.

  • 48.
    Sæter Bøe, Andreas
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    En vurdering av effekten til slokkesprayer på det norske markedet2017Report (Other academic)
    Abstract [no]

    Kravene som stilles til slokkesprayer (en type supplerende brannslokningsutstyr) er tydelige når det gjelder merking, men uklare med hensyn til slokkeeffekt. SP Fire Research har på oppdrag for Direktoratet for samfunnssikkerhet og beredskap (DSB), testet 11 slokkesprayer for å undersøke hvor god slokkeeffekten er, og hvor godt merket de er. Resultatene fra testene viser at de aller fleste slokkesprayene ikke tilfredsstiller krav til slokkeeffekt som oppstilles av den britiske standarden BS 6165:2002 og den kommende europeiske standarden prEN 16856:2015, som omfatter slike produkter.   De beste produktene viste imidlertid en relativt god slokkeeffekt, og kan være et godt supplement til annet brannslokningsutstyr for å slokke en brann i en tidlig fase. 

  • 49.
    Sæter Bøe, Andreas
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fullskala branntest av elbil2017Report (Other academic)
    Abstract [no]

    Norge og Grenland Energy, gjennomført to fullskala branntester av elbiler av merke Tata Indica GLX. Batteriet i bilene var et 26 kWh Li-ion batteri med en katode bestående av nikkel, magnesium og kobolt (NMC-katode).  I test 1 ble en elbil sluppet i fritt fall fra en høyde på 20 meter, for å simulere en kraftig kollisjon. Umiddelbart etter sammenstøtet begynte det å ryke kraftig fra batteriet. Etter  ca. 7 minutter begynte bilen å brenne med synlige flammer. Bilen fikk deretter brenne fritt. Etter 2,5 timer ble temperaturen målt mellom 310 og 540 °C på ulike deler av batteripakken. Bilen var da fullstendig utbrent. Testen viser at en elbil som blir utsatt for en kraftig kollisjon kan begynne å brenne.   I test 2 var målet å antenne batteripakken ved å bruke en ekstern varmekilde, for deretter  å måle hvor mye slokkevann som krevdes for å slokke brannen. Batteriet ble oppvarmet av en propanbrenner fra undersiden av bilen. Etter ca. 10 minutter begynte bilen å brenne med synlige flammer. Det ble gjennomført to slokkeforsøk under brannen. Brannen reantente etter første slokkeforsøk, men ble fullstendig slokket i andre forsøk. Til tross for den eksterne oppvarmingen av batteriet, og at bilen var overtent i en lengre periode, begynte det ikke å brenne i batteripakken. Brannen kunne dermed  slokkes med samme innsatsmetode og tidsforbruk som en brann i en konvensjonell bensin-/dieselbil.

  • 50.
    Valdés, Virginia
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway. Stord/Haugesund University College, Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Smouldering fires in wood pellets: the effect of varying the airflow2017Conference paper (Other academic)
    Abstract [en]

    Smouldering is a flameless form of combustion, deriving its heat from heterogeneous reactions occurring on the surface of the fuel when heated in an oxidizer environment. Smouldering is of interest both as a fundamental combustion problem and as a practical fire hazard, for instance in industrial storage units [1]. Many materials can sustain a smouldering reaction, among them wood pellets, which are becoming more widely used as an alternative to oil -fired central heating in residential and industrial buildings. Smouldering fires are difficult to detect, becoming a hazard that must not be underestimated [2]. The influence of varying the airflow, using two different configurations of smouldering combustion was studied: reverse and forward propagation. These are defined according to the direction in which the smouldering reaction front propagates relative to the oxidizer flow. In reverse smouldering, the reaction front propagates in the opposite direction to the oxidizer flow. In forward smouldering the front propagates in the same direction as the oxidizer flow: convective transport is in the direction of the original fuel ahead, preheating it before the smoulder zone is reached.

1 - 50 of 50
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.5