Change search
Refine search result
1234567 1 - 50 of 307
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abitbol, Tiffany
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. The Hebrew University of Jerusalem, Israel..
    Kam, Doron
    The Hebrew University of Jerusalem, Israel..
    Levi-Kalisman, Yael
    The Hebrew University of Jerusalem, Israel..
    Gray, Derek G
    McGill University, Canada.
    Shoseyov, Oded
    The Hebrew University of Jerusalem, Israel..
    Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals.2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 13, p. 3925-3933Article in journal (Refereed)
    Abstract [en]

    counterions in the suspensions. The results suggest that there is a threshold surface charge density (∼0.3%S) above which effective volume considerations are dominant across the concentration range relevant to liquid crystalline phase formation. Above this threshold value, phase separation occurs at the same effective volume fraction of CNCs (∼10 vol %), with a corresponding increase in critical concentration due to the decrease in effective diameter that occurs with increasing surface charge. Below or near this threshold value, the formation of end-to-end aggregates may favor gelation and interfere with ordered phase formation.

  • 2.
    Ahlberg-Eliasson, Karin
    et al.
    Swedish Rural Economy and Agricultural Society, Sweden.
    Nadeau, Elisabet
    Swedish Rural Economy and Agricultural Society, Sweden : SLU Swedish University of Agricultural Sciences, Sweden.
    Levén, Lotta
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Schnürer, Anna
    Swedish University of Agricultural Sciences, Sweden.
    Production efficiency of Swedish farm-scale biogas plants2017In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 97, p. 27-37Article in journal (Refereed)
    Abstract [en]

    Biogas from agricultural waste streams represents an important way to produce fossil-free energy, allow nutrient recycling and reduce greenhouse gas emissions. However, biogas production from agricultural substrates is currently far from reaching its full potential. In Sweden, the number of biogas plants and their output have increased in recent years, but they are still experiencing harsh economic conditions. A recent evaluation (2010–2015) of 31 farm-scale biogas production facilities in Sweden sought to identify parameters of importance for further positive development. In this paper, data on plant operation, gas yield and digestate quality for 27 of these plants are summarised and statistically analysed to investigate factors that could allow an increase in overall biogas production and in nutrient content in the digestate. The analysis showed that addition of co-substrates to manure results in higher gas production, expressed as both specific methane potential and volumetric gas production, than when manure is the sole substrate. Use of co-substrate was also found to be influential for the nutrient content of the digestate. These observed improvements caused by co-digestion should be considered when subsidy systems for manure-based biogas processes are being created, as they could also improve the economics of biogas production. However, to achieve higher efficiency in existing biogas plants and to improve the situation for future investments, a more detailed, long-term evaluation programme should also be considered.

  • 3.
    Almhöjd, Ulrika S.
    et al.
    Sahlgrenska Academy, Sweden.
    Lingström, Peter
    Sahlgrenska Academy, Sweden.
    Nilsson, Åke
    Sahlgrenska Academy, Sweden.
    Noren, Jörgen G.
    Sahlgrenska Academy, Sweden.
    Siljeström, Silje
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    ֖stlund, Å.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Bernin, D.
    University of Gothenburg, Sweden.
    Molecular Insights into Covalently Stained Carious Dentine Using Solid-State NMR and ToF-SIMS2017In: Caries Research, ISSN 0008-6568, E-ISSN 1421-976X, Vol. 51, no 3, p. 255-263Article in journal (Refereed)
    Abstract [en]

    Dyes currently used to stain carious dentine have a limited capacity to discriminate normal dentine from carious dentine, which may result in overexcavation. Consequently, finding a selective dye is still a challenge. However, there is evidence that hydrazine-based dyes, via covalent bonds to functional groups, bind specifically to carious dentine. The aim of this study was to investigate the possible formation of covalent bonds between carious dentine and 15N2-hydrazine and the hydrazine-based dye, 15N2-labelled Lucifer Yellow, respectively. Powdered dentine from extracted carious and normal teeth was exposed to the dyes, and the staining reactions were analysed using time-of-flight secondary ion mass spectrometry (ToF-SIMS), solid-state 13C-labelled nuclear magnetic resonance (NMR) and 15N-NMR spectroscopy. The results showed that 15N2-hydrazine and 15N2-labelled Lucifer Yellow both bind to carious dentine but not to normal dentine. It can thus be concluded that hydrazine-based dyes can be used to stain carious dentine and leave normal dentine unstained.

  • 4.
    Alsanius, Beatrix
    et al.
    SLU Sveriges lantbruksuniversitet, Sweden.
    Löfström, Charlotta
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Vattenrening för ökad hygien vid odling av frilandsgrönsaker och bär2017Other (Other (popular science, discussion, etc.))
    Abstract [sv]

    Under senare år har ett flertal utbrottmed magsjuka kopplats till konsumtionav grönsaker, frukt och bär. Sjukdomsframkallandebakterier och virus, såsomnorovirus, Salmonella, toxinproducerandeE. coli, Campylobacter och Listeria. kanspridas från bevattningsvatten via grö-dan till människor och orsaka sjukdom.Smittat bevattningsvatten kan därförförorena frilandsproducerade grönsakeroch bär. Det är alltås viktigt att hakontroll på bevattningsvattnets kvalitet.Dessutom är det viktigt att känna tillvilken typ av kultur som vattnet skaanvändas till, eftersom risken för vidaresmitta till människor varierar mellanolika typer av kulturer. T.ex. är det störrerisk att använda kontaminerat vatten tillkulturer som äts råa utan uppvärmninghos livsmedelsproducenten eller konsument,eftersom det då inte finns nå-gon möjlighet att avdöda de oönskademikroorganismerna i ett efterföljandesteg. Genom rätt hantering och adekvatbehandling av bevattningsvattnetkan dess hygieniska kvalitet förbättras.Ibland finns det möjlighet för odlarenatt byta vattenkälla, men då detta inte ärpraktiskt möjligt kan det kontamineradevattnet renas innan bevattning. I dettafaktablad beskrivs två grundläggandetekniker för rening av bevattningsvattenvid frilandsproduktion, nämligen fotokemi(fotokatalys, UV) och filtrering(mekanisk filtrering, långsamfiltrering).Dessa används för att minska risken försmittspridning med bevattningsvattnet.

  • 5.
    An, Jungxue
    et al.
    KTH Royal Institute of Technology, Sweden.
    Jin, Chunsheng
    Sahlgrenska Academy, Sweden ; University of Gothenburg, Sweden.
    Dėdinaitė, Andra
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, Sweden.
    Holgersson, Jan
    Sahlgrenska Academy, Sweden ; University of Gothenburg, Sweden.
    Karlsson, Niclas G.
    Sahlgrenska Academy, Sweden ; University of Gothenburg, Sweden.
    Claesson, Per M.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, Sweden.
    Influence of Glycosylation on Interfacial Properties of Recombinant Mucins: Adsorption, Surface Forces, and Friction2017In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 18, p. 4386-4395Article in journal (Refereed)
    Abstract [en]

    Interfacial properties of two brush-with-anchor mucins, C-P55 and C-PSLex, have been investigated at the aqueous solution/poly(methyl methacrylate) (PMMA) interface. Both are recombinant mucin-type fusion proteins, produced by fusing the glycosylated mucin part of P-selectin glycoprotein ligand-1 (PSLG-1) to the Fc part of a mouse immunoglobulin in two different cells. They are mainly expressed as dimers upon production. Analysis of the O-glycans shows that the C-PSLex mucin has the longer and more branched side chains, but C-P55 has slightly higher sialic acid content. The adsorption of the mucins to PMMA surfaces was studied by quartz crystal microbalance with dissipation. The sensed mass, including the adsorbed mucin and water trapped in the layer, was found to be similar for these two mucin layers. Atomic force microscopy with colloidal probe was employed to study surface and friction forces between mucin-coated PMMA surfaces. Purely repulsive forces of steric origin were observed between mucin layers on compression, whereas a small adhesion was detected between both mucin layers on decompression. This was attributed to chain entanglement. The friction force between C-PSLex-coated PMMA is lower than that between C-P55-coated PMMA at low loads, but vice versa at high loads. We discuss our results in terms of the differences in the glycosylation composition of these two mucins.

  • 6.
    An, Junxue
    et al.
    KTH Royal Institute of Technology, Sweden.
    Liu, Xiaoyan
    KTH Royal Institute of Technology, Sweden.
    Dedinaite, Andra
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, Sweden.
    Korchagina, Evgeniya
    University of Montreal, Canada .
    Winnik, Francoise M.
    University of Montreal, Canada ; National Institute for Materials Science, Japan ; University of Helsinki, Finland.
    Claesson, Per M.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, Sweden.
    Dedinaite, Andra
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. KTH Royal Institute of Technology, Sweden.
    Effect of solvent quality and chain density on normal and frictional forces between electrostatically anchored thermoresponsive diblock copolymer layers2017In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 487, p. 88-96Article in journal (Refereed)
    Abstract [en]

    Equilibration in adsorbing polymer systems can be very slow, leading to different physical properties at a given condition depending on the pathway that was used to reach this state. Here we explore this phenomenon using a diblock copolymer consisting of a cationic anchor block and a thermoresponsive block of poly(2-isopropyl-2-oxazoline), PIPOZ. We find that at a given temperature different polymer chain densities at the silica surface are achieved depending on the previous temperature history. We explore how this affects surface and friction forces between such layers using the atomic force microscope colloidal probe technique. The surface forces are purely repulsive at temperatures <40 °C. A local force minimum at short separation develops at 40 °C and a strong attraction due to capillary condensation of a polymer-rich phase is observed close to the bulk phase separation temperature. The friction forces decrease in the cooling stage due to rehydration of the PIPOZ chain. A consequence of the adsorption hysteresis is that the friction forces measured at 25 °C are significantly lower after exposure to a temperature of 40 °C than prior to heating, which is due to higher polymer chain density on the surface after heating.

  • 7.
    Andersson, I. M.
    et al.
    Lund University, Sweden.
    Glantz, M.
    Lund University, Sweden.
    Alexander, M.
    Arla Foods Ingredients Group P/S, Denmark.
    Millqvist-Fureby, Anna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Paulsson, M.
    Lund University, Sweden.
    Bergenståhl, B.
    Lund University, Sweden.
    Impact of surface properties on morphology of spray-dried milk serum protein/lactose systems2018In: International Dairy Journal, ISSN 0958-6946, E-ISSN 1879-0143, Vol. 85, p. 86-95Article in journal (Refereed)
    Abstract [en]

    This study investigated milk serum protein concentrate/lactose systems with varying ratios and how the morphology of the spray-dried particles of these systems could be described by the surface properties of the feed as well as the protein surface coverage of the particles. An extrapolation of the surface pressure of the feed to 0.3 s, the approximate time for molecular diffusion in an atomised droplet in the spray-dryer, showed a relationship with the particle morphology. At low protein concentrations (<1%), the particles were almost totally smooth. At higher protein concentrations (≥1%), the particles became dented and ridged, and these tended to become deeper and thicker as the protein concentration increased. It is suggested that the surface pressure of the feed at low protein concentrations is the most prominent surface property, whereas the modulus of elasticity seems to be the most prominent surface property for particle surface deformation at higher protein concentrations.

  • 8.
    Andersson, Johan
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Nordberg, Åke
    SLU, Sweden.
    Westin, Gunnar
    RISE - Research Institutes of Sweden, Bioeconomy, Processum.
    Askfilter för rening av svavelväte i deponigas2017Report (Other academic)
    Abstract [en]

    Landfill gas is formed under anaerobic conditions in landfills by microbial degradation of organic material. The gas composition can vary, but at Swedish landfills the gas generally consists of 40-60% methane, 30-40% carbon dioxide and 5-20% nitrogen. Hydrogen sulphide (H2S) is a highly toxic and corrosive gas, which occur in landfill gas in varying concentrations, from 10 to 30,000 ppm (equivalent to 0.001 to 3.0%). It is desirable that the landfill gas is used for electricity and/or heat production, but to do that there is a need to clean the gas to reach <200 ppm H2S. High levels of H2S increases wear on the engine/boiler and thus the frequency of servicing. This leads to expensive maintenance costs, and ultimately shortens the economic life of the plant. To reduce corrosion, it is common to adjust the flue gas temperature, but this also leads to a lower efficiency and thus reduces the energy utilization of the gas. In some cases the gas concentration of H2S is judged to be too high to be used for energy production at all. In 2015, approximately 53 GWh of landfill gas was flared in Sweden, which in many cases is due to problems with high levels of H2S.

     

    Cleaning of landfill gas from H2S leads to several values; the gas energy is used efficiently, maintenance and service costs of the engines/boiler are reduced, and emissions of acidifying sulphur dioxide from combustion of landfill gas decreases. There are commercial cleaning technologies for H2S but they are expensive, both in terms of capital cost and operating cost. Thus, there is a need to develop new cost efficient cleaning technologies that improve the economic outcome at landfills and that enables landfill gas with high H2S concentrations to be utilized for valuable energy transformation.

     

    RISE (formerly JTI – Swedish Institute of Agricultural and Environmental Engineering) together with SLU develops new, potentially cost-efficient methods for upgrading biogas to fuel quality. One of the methods is based on the gas passing through a bed of moist ash (a so-called ash filter), where carbon dioxide and H2S are fixed. The hypothesis of this project was that ashes originating from the incineration of waste, recycled waste wood etc., can be used to clean the high levels of H2S in landfill gas. This type of ashes will usually be disposed of in landfills anyway and if the treatment effect is good, it would generate synergy effects in the form of the ash first being used to clean landfill gas from sulphur before it is used as a construction material at landfills.

     

    This project performed two trials in pilot scale at a Swedish landfill with very high concentration of H2S, approximately 15,000 ppm. Different gas flow rates were studied (0.7 to 7.6 m3 / h), while the volume of ash used were similar in the two trials, 0,37 m3. The concentration of H2S in the cleaned gas was consistently very low during treatment, < 10 ppm at low gas flow rates and < 200 ppm at high gas flow rates. Two types of ash were investigated and both proved to have very good capacity to fix H2S, 44-61 g H2S/kg dry ash. In comparison with literature values, there is only one study showing an uptake capacity in the same order. Other studies report an order of magnitude lower uptake capacity.

    Based on the experimental results, the technical and economic potential for an ash filter as the cleaning method was assessed. The calculations were made for various typical landfills to cover the different range of landfills. For normal sized landfills with gas flow rates of 100-1 000 m3/h and H2S concentrations between 100 and 1 000 ppm, the amount of ash needed is 10-130 tons of dry ash per year. For the special case where the H2S concentration is extremely high, the amount of ash increases and a plant with 15 000 ppm H2S and a gas flow rate of 200 m3/h requires approximately 800 tons of dry ash per year. However, overall modest amounts of ash is required and considering all Swedish landfills the requirement of ash would be only 0.2-0.3% of the annual production of ash in Sweden.

     

    The economic calculations show that the ash filter is a competitive method for removal of H2S. For the special case of extremely high levels of H2S, it turned out that the cost of the ash filter is approximately 20% lower in comparison with the cheapest feasible conventional cleaning technology on the market. Also for the cleaning of landfill gas at more normal levels of H2S, the ash filter is competitive. At low gas flow rates (100 m3/h), the ash filter is clearly competitive compared to literature values for conventional cleaning technologies. The economy of scale seems to be higher for the conventional cleaning technologies, and consequently the difference between the cost of ash filter cleaning and other technologies is less at higher gas flow rates.

     

    The low treatment cost of the ash filter reveals opportunities for landfills that currently do not clean the gas from H2S. During the project 15 Swedish landfills was contacted and none of these reported any form of H2S cleaning. When using cleaning, the landfill gas can be used effectively, i.e. reduced flaring, increased efficiency of electricity and heat production with reduced wear on boilers and combustion equipment as well as reduced emissions of sulphur into the atmosphere, which also reduces the potential odour problems around the landfill.

     

    For further development, the design of an ash filter module prototype at full-scale is important. Furthermore, the treated ashes should be analysed for leaching characteristics, storability and usability as construction materials or as cover landfills along with an assessment of the overall environmental impact. Further tests at full scale should be made at other landfills with various gas flow rates and H2S concentrations to verify the performance of the conducted pilot tests.

  • 9.
    Anheden, Marie
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy.
    Uhlin, Anders
    RISE - Research Institutes of Sweden, Bioeconomy.
    Wolf, Jens
    RISE - Research Institutes of Sweden, Bioeconomy.
    Hedberg, Martin
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Berg, Robert
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Ankner, Tobias
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Berglin, Niklas
    NiNa Innovation and ÅF Industry, Sweden.
    von Schenck, Anna
    NiNa Innovation and ÅF Industry, Sweden.
    Larsson, Anders L
    Valmet AB, Sweden.
    Guimaraes, Matheus
    Fibria, Sweden.
    Fiskerud, Maria
    Fly Green Fund and Karlstad Airport, Sweden.
    Andersson, Stefan
    RISE - Research Institutes of Sweden, Bioeconomy.
    Value chain for production of bio-oil from kraft lignin for use as bio-jet fuel2017In: The 7th Nordic Wood Biorefinery Conference held in Stockholm, Sweden, 28-30 Mar. 2017: NWBC 2017, Stockholm: RISE Bioekonomi , 2017, p. 104-109Conference paper (Refereed)
    Abstract [en]

    The LignoJet project aimed to achieve an intermediate lignin-oil product miscible with fossil feedstock and with a significantly reduced oxygen content. A technical concept for production has been studied that involves combined catalysed depolymerisation and hydrodeoxygenation, so called hydrogenolytic depolymerisation, of kraft lignin. Kraft lignin was separated through membrane ultrafiltration from softwood and eucalyptus black liquor followed by precipitation through LignoBoost technology. A difference in lignin properties was observed between ultrafiltration of softwood and eucalyptus black liquor through 15 and 150kDa ceramic membranes. Lignin-oils with similar oxygen content were produced regardless of origin and fractionation technique. A lignin-oil with favourable properties as precursor for refinery integration for jet fuel production as produced in small-scale batch experiments using nickel-based catalyst. Stable pumpable oils with melting point of less than 25-50 deg C and with 20-30% lower oxygen content and aromatic content were obtained that would be suitable as jet fuel precursors. The estimated production cost was found to be competitive with that of other liquid biofuels, while additional revenues could potentially be achieved by also producing chemical and materials from suitable fractions of the lignin-oil.

  • 10.
    Anyangwe Nwaboh, Javis
    et al.
    Physikalisch-Technische Bundesanstalt, Germany.
    Persijn, Stefan
    Research and Development VSL, Netherlands.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Bohlen, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Werhahn, Olav
    Physikalisch-Technische Bundesanstalt, Germany.
    Ebert, Volker
    Physikalisch-Technische Bundesanstalt, Germany.
    Metrological quantification of CO in biogas using laser absorption spectroscopy and gas chromatography2018In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501Article in journal (Refereed)
    Abstract [en]

    Biogas has a vital role in the future market of renewable energy. When upgraded to biomethane, it can be injected into natural gas grids if the level of certain impurities complies with the specifications in EN16723. For some of these impurities, suitable measurement methods are lacking which hampers the quality control of biomethane to be injected into natural gas networks. Here, we report the evaluation of three detection methods suitable for carbon monoxide (CO) in biogas and biomethane applications for which EN16723 specifies an upper limit of 0.1% (1000 µmol/mol). Two of these methods are based on laser absorption spectroscopy (LAS) and one on gas chromatography (GC). Both LAS spectrometers are employing direct absorption spectroscopy and operating at 4.6µm, probing a single CO absorption line in the fundamental CO band: One – called dTDLAS (direct tunable diode laser absorption spectroscopy)- is based on a new Interband Cascade Laser specially designed for biogas and biomethane applications, while the other is based on Quantum Cascade Laser Absorption Spectroscopy (QCLAS). The GC is equipped with two packed columns (Hayesep Q and Molecular Sieve 5A) and a thermal conductivity detector. Carbon monoxide amount fraction results in biogas matrices derived using these three measurement methods are compared to amount fraction values of different, gravimetrically prepared reference gas standards of CO in biogas. These were used to validate the measurement capabilities. The measured CO amount fraction results from LAS and GC covered 10 µmol/mol to 30000 µmol/mol (system measurement ranges, LAS: 3 µmol/mol - 1000 µmol/mol, GC: 500 µmol/mol - 30000 µmol/mol) and were in excellent agreement with the gravimetric values of the gas standards. At 400 µmol/mol, the guide to the expression of uncertainty in measurement (GUM) compliant relative standard uncertainties of our calibration-free dTDLAS and the gas-calibrated QCLAS systems are estimated to be 1.4 % vs 0.5 %, respectively. The relative standard uncertainty of the GC CO measurements at 5075 µmol/mol is 1.3 %. This work demonstrates that, by means of GC and LAS, relative standard uncertainties of 1.4 % and below can be reached for CO measurements in biogas and that cost-optimized calibration-free approaches not requiring frequent use of gas standards have become available.

  • 11.
    Arrhenius, Karine
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Karlsson, Anders
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Hakonen, Aron
    Ohlson, Lars
    Fordonsgas Sverige AB, Sweden.
    Yaghooby, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Safety and Transport, Measurement Science and Technology.
    Variations of fuel composition during storage at Liquefied Natural Gas refuelling stations2018In: Journal of Natural Gas Science and Engineering, ISSN 1875-5100, E-ISSN 2212-3865, Vol. 49, p. 317-323Article in journal (Refereed)
    Abstract [en]

    Liquefied Natural Gas (LNG) and Liquefied Biogas (LBG) utilization within the heavy duty transport sector is today a sustainable alternative to the use of oil. However, in spite of the high degree of insulation in the storage tank walls, it is impossible to fully avoid any net heat input from the surroundings. Due to some degree of vaporization this results in variation in gas composition during storage at refuelling stations, potentially leading to engine failures. Within this study, a vaporizer/sampler has been built and tested at a station delivering liquefied biomethane (LBG) and occasionally; such in this case, LNG to heavy and medium duty trucks. The vaporizer/sampler has then been used to study the variation of the LNG composition in the storage tank during a two weeks period. The results clearly underline a correlation between the gas phase and the liquid phase as the concentration changes follow the same trend in both phases. Two opposite effects are assumed to influence the concentration of methane, ethane and propane in the liquid and in the gas phase. On one hand, because of the probable presence of not fully mixed layers in the storage tank and due to vehicles being refuelled, both liquid and gas phases are enriched in methane at the expense of ethane and propane. On the other hand, due to boil-off effect towards the end of the storage period, both liquid and gas phases are enriched in ethane and propane at the expense of methane.

  • 12.
    Arrhenius, Karine
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Yaghooby, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Rosell, Lars
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Culleton, Lucy
    National Physical Laboratory (NPL), UK.
    Bartlett, Sam
    National Physical Laboratory (NPL), UK.
    Murugan, Arul
    National Physical Laboratory (NPL), UK.
    Brewer, Paul
    National Physical Laboratory (NPL), UK.
    Li, Jianrong
    Van Swinden Laboratorium B.V. (VSL), The Netherlands.
    van der Veen, Adriaan M. H.
    Van Swinden Laboratorium B.V. (VSL), The Netherlands.
    Krom, Iris
    Van Swinden Laboratorium B.V. (VSL), The Netherlands.
    Lestremau, Francoise
    Institut national de l'environnement industriel et des risques (INERIS), France.
    Beranek, Jan
    Česky metrologicky institut (ČMI), Czech Republic.
    Suitability of vessels and adsorbents for the short-term storage of biogas/biomethane for the determination of impurities – Siloxanes, sulfur compounds, halogenated hydrocarbons, BTEX2017In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 105, p. 127-135Article in journal (Refereed)
    Abstract [en]

    Biogas is a renewable energy source with many different production pathways and various excellent opportunities to use, for example as vehicle fuel (biomethane). Reliable analytical methodologies for assessing the quality of the gas are critical to ensure that the gas can technically and safely be used. An essential part of any procedure aiming to determine the quality is the sampling and the transfer to the laboratory. One of the greatest challenges is then to ensure that the composition of the sample collected does not change between the time of sampling and the analysis. The choice of the sampling vessel to be used must be made only after fully assessing its short-term stability. In this paper, the results from short-term stability studies in different vessels (cylinders, bags and sorbents) are presented for siloxanes, BTEX, halogenated hydrocarbons and sulfur compounds. Storage of dry gas at high pressure (> 6 MPa) appears to be a good alternative however it is currently challenging to find an optimal treatment of the cylinders for all species to be assessed in biogas/biomethane. At lower pressure, adsorption effects on the inner surface of the cylinders have been observed. The use of bags and sorbent tubes also shows limitation. No existing sorbent tubes are sufficiently universal as to trap all possible impurities and high boiling compounds may adsorbed on the inner surface of the bags walls. Moreover, the presence of water when storing biogas most certainly impacts the storage stability of compounds in most vessels. Using at least two sampling methods for a given compound and comparing results will allow taking into account the eventual effects of water vapour, and adsorption on the inner surface of the vessels.

  • 13.
    Arvidsson, Martin
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Ringstad, Lovisa
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Skedung, Lisa
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Duvefelt, Kenneth
    KTH Royal Institute of Technology, Sweden.
    Rutland, Mark W.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials. KTH Royal Institute of Technology, Sweden.
    Feeling fine - the effect of topography and friction on perceived roughness and slipperiness2017In: Biotribology, ISSN 2352-5738, Vol. 11, p. 92-101Article in journal (Refereed)
    Abstract [en]

    (1) Background. To design materials with specific haptic qualities, it is important to understand both the contribution of physical attributes from the surfaces of the materials and the perceptions that are involved in the haptic interaction. (2) Methods. A series of 16 wrinkled surfaces consisting of two similar materials of different elastic modulus and 8 different wrinkle wavelengths were characterized in terms of surface roughness and tactile friction coefficient. Sixteen participants scaled the perceived Roughness and Slipperiness of the surfaces using free magnitude estimation. Friction experiments were performed both by participants and by a trained experimenter with higher control. (3) Results and discussion. The trends in friction properties were similar for the group of participants performing the friction measurements in an uncontrolled way and the experiments performed under well-defined conditions, showing that the latter type of measurements represent the general friction properties well. The results point to slipperiness as the key perception dimension for textures below 100. μm and roughness above 100. μm. Furthermore, it is apparent that roughness and slipperiness perception of these types of structures are not independent. The friction is related to contact area between finger and material. Somewhat surprising was that the material with the higher elastic modulus was perceived as more slippery. A concluding finding was that the flat (high friction) reference surfaces were scaled as rough, supporting the theory that perceived roughness itself is a multidimensional construct with both surface roughness and friction component.

  • 14.
    Ascard, Johan
    et al.
    Swedish Board of Agriculture, Sweden.
    Löfkvist, Klara
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Mie, Axel
    SLU Swedish University of Agriculture Science, Sweden ; Karolinska Institute, Sweden.
    Wivstad, Maria
    SLU Swedish University of Agriculture Science, Sweden .
    Växtskyddsmedel i ekologisk produktion – användning och risker2017Report (Other academic)
    Abstract [sv]

    Förebyggande åtgärder dominerar i växtskyddet i ekologisk produktion och användningen av växtskyddsmedel är begränsad. Främst biologiska växtskyddsmedel används och utöver det ett fåtal kemiska växtskyddsmedel, de flesta med låg risk för hälsa och miljö. Dessa används främst i produktion av frukt, bär och grönsaker.

  • 15.
    Aschemann-Witzel, Jessica
    et al.
    Aarhus University, Denmark.
    de Hooge, Ilona E.
    Aarhus University, Denmark.
    Rohm, Harald
    Technische Universität Dresden, Germany.
    Normann, Anne
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Bossle, Marilia B.
    Unisinos Business School, Brazil.
    Grønhøj, Alice
    Aarhus University, Denmark.
    Oostindjer, Marije
    Norwegian University of Life Sciences, Norway.
    Key characteristics and success factors of supply chain initiatives tackling consumer-related food waste – A multiple case study2017In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 155, p. 33-45Article in journal (Refereed)
    Abstract [en]

    Food waste accounts for a considerable share of the environmental impact of the food sector. Therefore, strategies that aim to reduce food waste have great potential to improve sustainability of the agricultural and food supply chains. Consumer-related food waste is a complex issue that needs collaboration between various supply chain actors and sector stakeholders. Although a range of initiatives from various actors already exists internationally, there is still a lack of knowledge on which lessons can be derived from such cases. The current multiple case study provides insights into how to successfully design future actions, by analysing common and distinct key success factors in 26 existing initiatives to reduce consumer-related food waste. The findings reveal that collaboration between stakeholders, timing and sequence of initiatives, competencies that the initiative is built on, and a large scale of operations are key success factors. Success factors are identified for the primary design, for the development and maintenance phase, and for reaching out to consumers. There are three general types of initiatives that differ in their aims and characteristics: information and capacity building, redistribution, and retail and supply chain alteration. The first type focuses most strongly on motivating consumer food waste avoidance behaviour and strengthening consumer abilities, while the second and third focus primarily on altering consumer food choice context, but combine this with aspects of raising awareness. Recommendations are derived for future initiatives which should take inspiration from existing initiatives, especially considering the right partners, competencies involved, timing the start of the initiative right, and aim to soon achieve a large scale.

  • 16.
    Avadí, Angel
    et al.
    UPR Recyclage et Risque, France ; University of Montpellier, France.
    Henriksson, Patrik J. G.
    Stockholm University, Sweden ; WorldFish, Malaysia.
    Vázquez-Rowe, Ian
    Pontificia Universidad Católica del Perú, Peru.
    Ziegler, Friederike
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Towards improved practices in Life Cycle Assessment of seafood and other aquatic products2018In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 23, no 5, p. 979-981Article in journal (Refereed)
    Abstract [en]

    Introduction: 

    Aquatic supply chains, based on e.g. fish, molluscs, crustaceans and algae, provide products aimed for direct or indirect human consumption and other uses. Global demand for these products is increasing, but the fact that wild-capture fisheries—supplying inputs for the food and feed industries—have stagnated (FAO 2016), or even declined, has raised questions about the environmental consequences of aquatic supply chains  Research applying LCA to seafood products has emerged since the early years of the century and, until today, dozens of case studies of fisheries and aquaculture systems from all around the world have been published. The body of literature in this field has grown to the extent of allowing systematic reviews to be undertaken on specific production sectors, such as for capture fisheries 

    The lifecycle of seafood commodities differs from that of terrestrial production systems in their diversity, in the case of fisheries, the reliance on extraction of a natural resource (fish stocks), their impacts on often unmapped ecosystems (e.g. seafloors and deep sea fish stocks) and the more complex trophic webs of aquatic ecosystems. To capture also these biotic and fisheries-specific impacts, an increasing number of fisheries and aquaculture LCAs apply novel impact categories such as biotic resource use and benthic ecosystems impacts. Aquaculture systems, in addition, often rely on feed resources from capture fisheries, agriculture and livestock, requiring extensive LCI models.

    Among the existing aquaculture seafood LCA studies, there is a strong focus on salmonids aquaculture in Europe and North America. The globally largest aquaculture sector, carp farming in China, has, however, been poorly covered. Peruvian anchoveta, the world’s largest fishery and the primary source of fishmeal and fish oil, was first modelled in 2014. Consequently, while the number of aquatic LCAs has steadily been increasing, the uniqueness of aquatic production chains and the diversity of species leave many inventories overlooked and some relevant impact categories unaddressed. In response, we initiated this Special Issue (SI), to supplement literature and highlight shortcomings. Thirteen articles were ultimately accepted in the SI

  • 17.
    Axelson, U.
    et al.
    The Rural Economy and Agricultural Society, Sweden ; Swedish University of Agricultural Science, Sweden.
    Söderström, M.
    Swedish University of Agricultural Science, Sweden.
    Jonsson, Anders
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience. Swedish University of Agricultural Science, Sweden.
    Risk assessment of high concentrations of molybdenum in forage2018In: Environmental Geochemistry and Health, ISSN 0269-4042, E-ISSN 1573-2983Article in journal (Refereed)
    Abstract [en]

    Molybdenum is toxic to ruminants when present in high levels in forage, causing physiological copper deficiency. A critical level for ruminants is 3–10 mg Mo kg−1 dry matter. The average Mo level varies considerably between different arable soils, depending mainly on soil parent material. This study investigated the possibility of using various existing sources of geospatial information (geophysical, biogeochemical and soil chemical) to develop a geography-based risk assessment system. Forage samples (n = 173) were collected in 2006–2007. Three types of national geoscientific datasets were tested: (1) SEPA topsoil, comprising data from arable land within the Swedish environmental monitoring programme; (2) SGU biogeochemical, containing data from aquatic plant root material collected in small streams; and (3) SGU geophysical, consisting of data from airborne gamma-ray scanning. The digital postcode area map was used for geocoding, with Mo concentrations in forage assigned to arable parts of the corresponding postcode area. By combining this with the three national geoscientific databases, it was possible to construct a risk map using fuzzy classification depicting High-risk, Intermediate-risk, Low-risk and Very-low-risk areas. The map was validated using 42 randomly selected samples. All samples but one with Mo &gt; 3 mg kg−1 were found in postcode areas designated High risk. Thus, the risk map developed seems to be useful as a decision support system on where standard forage analyses need to be supplemented with Mo analyses.

  • 18.
    Badal Tejedor, Maria
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    Nordgren, Niklas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Schuleit, Michael
    Novartis Pharma AG, Switzerland.
    Millqvist-Fureby, Anna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Rutland, Mark W.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting2017In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 46, p. 13180-13188Article in journal (Refereed)
    Abstract [en]

    Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture - due to the fast condensation kinetics - leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive effect under the same ambient conditions. The markedly different behavior detected by force measurements clearly shows the sticky and nonsticky propensity of the materials and allows a mechanistic description.

  • 19.
    Badal Tejedor, Maria
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials. KTH Royal Institute of Technology, Sweden.
    Nordgren, Niklas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Schuleit, Michael
    Novartis Pharma AG, Switzerland.
    Pazesh, Samaneh
    Uppsala University, Sweden.
    Alderborn, Göran
    Uppsala University, Sweden.
    Millqvist-Fureby, Anna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Rutland, Mark W.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials. KTH Royal Institute of Technology, Sweden.
    Determination of interfacial amorphicity in functional powders2017In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 4, p. 920-926Article in journal (Refereed)
    Abstract [en]

    The nature of the surfaces of particles of pharmaceutical ingredients, food powders, and polymers is a determining factor for their performance in for example tableting, powder handling, or mixing. Changes on the surface structure of the material will impact the flow properties, dissolution rate, and tabletability of the powder blend. For crystalline materials, surface amorphization is a phenomenon which is known to impact performance. Since it is important to measure and control the level of amorphicity, several characterization techniques are available to determine the bulk amorphous content of a processed material. The possibility of characterizing the degree of amorphicity at the surface, for example by studying the mechanical properties of the particles' surface at the nanoscale, is currently only offered by atomic force microscopy (AFM). The AFM PeakForce QNM technique has been used to measure the variation in energy dissipation (eV) at the surface of the particles which sheds light on the mechanical changes occurring as a result of amorphization or recrystallization events. Two novel approaches for the characterization of amorphicity are presented here. First, since particles are heterogeneous, we present a methodology to present the results of extensive QNM analysis of multiple particles in a coherent and easily interpreted manner, by studying cumulative distributions of dissipation data with respect to a threshold value which can be used to distinguish the crystalline and amorphous states. To exemplify the approach, which is generally applicable to any material, reference materials of purely crystalline α-lactose monohydrate and completely amorphous spray dried lactose particles were compared to a partially amorphized α-lactose monohydrate sample. Dissipation data are compared to evaluations of the lactose samples with conventional AFM and SEM showing significant topographical differences. Finally, the recrystallization of the surface amorphous regions in response to humidity was followed by studying the dissipation response of a well-defined surface region over time, which confirms both that dissipation measurement is a useful measure of surface amorphicity and that significant recrystallization occurs at the surface in response to humidity.

  • 20.
    Badal Tejedor, Maria
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    Pazesh, Samaneh
    Uppsala University, Sweden.
    Nordgren, Niclas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Schuleit, Micheal
    Novartis Pharma AG, Switzerland.
    Rutland, Mark W.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    Alderborn, Göran
    Uppsala University, Sweden.
    Millqvist-Fureby, Anna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Milling induced amorphisation and recrystallization of α-lactose monohydrate2018In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 537, no 1-2, p. 140-147Article in journal (Refereed)
    Abstract [en]

    Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition.

  • 21.
    Bannow, J.
    et al.
    KTH Royal Institute of Technology, Sweden.
    Benjamins, J. -W
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    Wohlert, J.
    KTH Royal Institute of Technology, Sweden.
    Löbmann, K.
    University of Copenhagen, Denmark.
    Svagan, A. J.
    KTH Royal Institute of Technology, Sweden.
    Solid nanofoams based on cellulose nanofibers and indomethacin—the effect of processing parameters and drug content on material structure2017In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 526, no 1-2, p. 291-299Article in journal (Refereed)
    Abstract [en]

    The unique colloidal properties of cellulose nanofibers (CNF), makes CNF a very interesting new excipient in pharmaceutical formulations, as CNF in combination with some poorly-soluble drugs can create nanofoams with closed cells. Previous nanofoams, created with the model drug indomethacin, demonstrated a prolonged release compared to films, owing to the tortuous diffusion path that the drug needs to take around the intact air-bubbles. However, the nanofoam was only obtained at a relatively low drug content of 21 wt% using fixed processing parameters. Herein, the effect of indomethacin content and processing parameters on the foaming properties was analysed. Results demonstrate that a certain amount of dissolved drug is needed to stabilize air-bubbles. At the same time, larger fractions of dissolved drug promote coarsening/collapse of the wet foam. The pendant drop/bubble profile tensiometry was used to verify the wet-foam stability at different pHs. The pH influenced the amount of solubilized drug and the processing-window was very narrow at high drug loadings. The results were compared to real foaming-experiments and solid state analysis of the final cellular solids. The parameters were assembled into a processing chart, highlighting the importance of the right combination of processing parameters (pH and time-point of pH adjustment) in order to successfully prepare cellular solid materials with up to 46 wt% drug loading.

  • 22.
    Barba, Francisco
    et al.
    University of Valencia, Spain.
    Ahrné, Lilia
    Universiry of Copenhagen, Denmark.
    Xanthakis, Epameinondas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Landerslev, Martin G.
    Universiry of Copenhagen, Denmark.
    Orlien, Vibeke
    Universiry of Copenhagen, Denmark.
    Chapter 2. Innovative technologies2017In: Innovative Technologies for Food Preservation: Inactivation of spoilage and pathogenic microorganisms / [ed] Francisco J. Barba; Mohamed Koubaa; Vibeke Orlien; Anderson Sant´Ana, Elsevier, 2017, p. 25-Chapter in book (Other academic)
  • 23.
    Barwick, Vicki
    et al.
    LGC Ltd, UK.
    Ellison, Stephen L. R.
    LGC Ltd, UK.
    Gjengedal, Elin
    Norwegian University of Life Sciences, Norway.
    Magnusson, Bertil
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    Molinier, Olivier
    Aglae, France.
    Patriarca, Marina
    Istituto Superiore di Sanità, Italy.
    Sibbesen, Lorens
    LAB Quality International, Denmark.
    Vanlaethem, Nicole
    Classes Moyennes et Energie, Belgium.
    Vercruysse, Isabelle
    Belab, Belgium.
    Method validation in analytical sciences: discussions on current practice and future challenges2017In: Accreditation and Quality Assurance, ISSN 0949-1775, E-ISSN 1432-0517, Vol. 22, no 5, p. 253-263Article in journal (Refereed)
    Abstract [en]

    Eurachem held a workshop on method validation in analytical sciences in Gent, Belgium, on 9–10 May 2016. A summary of the working group discussions is provided here. The discussions covered a range of issues concerned with current practice and future challenges in method validation, i.e. setting requirements for a method to be validated; planning validation studies; validation of qualitative and semi-quantitative methods; validation of multi-parameter methods; determination of trueness/bias; assessment of working range; validation in microbiology; and method validation under flexible scope of accreditation. Delegates (129) from 24 different countries and from different backgrounds, e.g. from both public and private laboratories, laboratory associations, accreditation bodies and universities, attended the working groups, thus providing opportunities to collect a variety of views and experiences as well as to identify potential gaps in current guidance and regulations. While the practicalities of assessing method performance characteristics are generally well understood, the issue of setting requirements for those characteristics beforehand is less straightforward. Although a number of documents addressing the principles of method validation are available, guidance on dealing with more complex and ‘non-ideal’ situations, as well as examples of good practice, would be welcomed and greater harmonisation of approaches was deemed necessary. There remains a need for guidance on both the concepts that apply to ‘qualitative’ or ‘nominal’ test methods and on the practical implementation of validation studies in such cases.

  • 24.
    Bender, P.
    et al.
    University of Cantabria, Spain .
    Bogart, L. K.
    University College London, UK .
    Posth, O.
    Physikalisch-Technische Bundesanstalt, Germany .
    Szczerba, W.
    Bundesanstalt für Materialforschung Und-prüfung (BAM), Germany ; AGH University of Science and Technology, Poland .
    Rogers, S. E.
    ISIS-STFC Neutron Scattering Facility, UK.
    Castro, A.
    SOLVE Research and Consultancy AB, Sweden .
    Nilsson, L.
    SOLVE Research and Consultancy AB, Sweden ; Lund University, Sweden .
    Zeng, L. J.
    Chalmers University of Technology, Sweden .
    Sugunan, Abhilash
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Sommertune, Jens
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Fornara, A.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    González-Alonso, D.
    University of Cantabria, Spain .
    Fernández Barquín, L.
    University of Cantabria, Spain .
    Johansson, Christer
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 45990Article in journal (Refereed)
    Abstract [en]

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions.

  • 25.
    Berg, Robert
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Process och Pharmaceuticals Development.
    Bergman, Jan
    Karolinska Institute, Sweden.
    Synthesis of thieno[2,3-b]indole-2,3-diones and their ring expansions induced by diazomethane2017In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 73, no 38, p. 5654-5658Article in journal (Refereed)
    Abstract [en]

    Indole-2-thione 3 reacted quickly with oxalyl chloride to yield thieno[2,3-b]indole-2,3-dione 4 together with the isomer thiazolo[3,2-a]indole-2,3-dione 5. These thieno[2,3-b]indole-2,3diones underwent ring expansions when treated with diazomethane and e.g. thieno[2,3-b]indole-2,3-dione 4 gave the thiopyrano derivative 16, after two insertions.

  • 26.
    Bergjord Olsen, A. K.
    et al.
    Norwegian Institute of Bioeconomy Research (NIBIO), Norway.
    Persson, T.
    Norwegian Institute of Bioeconomy Research (NIBIO), Norway.
    de Wit, A.
    Alterra - Wageningen UR, The Netherlands.
    Nkurunziza, L.
    SLU Swedish University of Agricultural Sciences, Sweden.
    Sindhøj, Erik
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Eckersten, H.
    SLU Swedish University of Agricultural Sciences, Sweden.
    Estimating winter survival of winter wheat by simulations of plant frost tolerance2018In: Journal of Agronomy and Crop Science, ISSN 0931-2250, E-ISSN 1439-037X, Vol. 204, no 1, p. 62-73Article in journal (Refereed)
    Abstract [en]

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this model, four winter wheat cultivars were sown in a field experiment in Uppsala, Sweden in 2013 and 2014. The LT50 was determined by tests of frost tolerance in November, and the cultivars’ LT50c was estimated. Further, recorded winter survival from 20 winter wheat field variety trials in Sweden and Norway was collected from two winter seasons with substantial winter damages. FROSTOL simulations were run for selected cultivars at each location. According to percentage of winter damage, the cultivar survival was classified as “survived,” “intermediate” or “killed.” Mean correspondence between recorded and simulated class of winter survival was 75% and 37% for the locations in Sweden and Norway, respectively. Stress factors that were not accounted for in FROSTOL might explain the poorer accuracy at the Norwegian locations. The accuracy was poorest for cultivars with intermediate LT50c levels. When low temperature was the main cause of damage, as at the Swedish locations, the model accuracy was satisfying.

  • 27.
    Bergman, Kristina
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Ziegler, Friederike
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Environmental impacts of alternative antifouling methods and use patterns of leisure boat owners2018In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502Article in journal (Refereed)
    Abstract [en]

    Purpose: Leisure boaters in the Baltic Sea apply more copper as antifoulant than needed and permitted. Initiatives have been started to identify efficient means making boat owners comply with regulations through changed consumer behavior. We compare the environmental impacts of conventional and alternative antifouling methods, using Life Cycle Assessment methodology. Methods: Two non-toxic methods were compared with biocide paint. To study the influence of boat owner use patterns, paint and brush washer scenarios (e.g., different paints, amounts, and maintenance) were created based on current use and recommendations. The functional unit was an average Swedish leisure boat kept fouling free for 1 year and impact categories studied were freshwater eco-toxicity and greenhouse gas emissions. Production of paints, fuel, electricity, and material used in the non-toxic methods was included. Sensitivity analysis was performed regarding the characterization method for toxicity, the fuel consumption data, and the copper release data. Results and discussion: The non-toxic methods, hull cover and brush washer, performed best, but a trade-off was identified when the brush washer was located further away from the home port, when additional transportation increased greenhouse gas emissions. The resources needed for the non-toxic methods (production of materials and electricity used) cause considerably lower toxic emissions than paint. In the paint scenarios, using less paint and cleaning the boat over a washing pad with water treatment reduces aquatic emissions significantly. Fuel-related emissions were consistently lower than paint-related emissions. In the best-performing paint scenario, fuel- and paint-related emissions represented 26 and 67% of total emissions, respectively. Conclusions: The non-toxic methods hull cover and brush washers lead to lower emissions, especially when brush washers were located close to the home port. Lacking such infrastructure, “painting less” is a way to reduce emissions, by using lower amounts of paint and painting less frequently. More widespread use of these antifouling strategies would considerably reduce copper emissions from leisure boating to the Baltic Sea. We suggest that support to marinas for investments in brush washers and washing pads should be further developed to enable boat owners to choose more sustainable antifouling methods and that information campaigns on the combined economic, health, and ecosystem impacts of antifouling are especially designed for boaters, marinas, market actors, and policy makers for a change to take place towards more sustainable practices.

  • 28.
    Bergstrand, Karl-Johan
    et al.
    SLU Swedish University of Agricultural Sciences, Sweden.
    Löfkvist, Klara
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Organisk gödsling i krukodlade kulturer2017Report (Other academic)
    Abstract [sv]

    Det finns en ökande efterfrågan på ekologiska produkter. Producenter av ekologiskt producerade krukodlade produkter såsom kryddväxter, prydnadsväxter och grönsakplantor har stora odlingsutmaningar för att uppnå god kvalitet. Den stora utmaningen ligger i näringstillförseln och tidigare erfarenheter har varit blandade, ibland har produktkvalitén blivit dålig och man har misstänkt att obalanser i växtnäringstillförseln har varit orsak till detta. I ett pilotprojekt finansierat av Tillväxt Trädgård undersöktes kvävetillgängligheten från olika organiska gödselmedel i krukodlade kulturer.

  • 29.
    Bergstrand, Kjell
    et al.
    SLU Swedish University of Agricultural Science, Sweden.
    Löfkvist, Klara
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Asp, Håkan
    SLU Swedish University of Agricultural Science, Sweden.
    Dynamics of nitrogen availability in pot grown crops with organic fertilization2018In: Biological Agriculture & Horticulture, ISSN 0144-8765, E-ISSN 2165-0616Article in journal (Refereed)
    Abstract [en]

    Pot grown herbs are often cultivated as certified organic products, and there is an increasing demand for organically certified ornamental plants. Supplying the required nutrients using organic fertilizers is a challenge with respect to matching the mineralization and thus the availability of dissolved nutrients in the growing medium with plant demand. In experiments, sweet basil and Pelargonium × hortorum were cultivated using two different organic fertilizer strategies and controlled-release mineral nutrients as control treatment. The two organic strategies were, i) blood meal + Baralith® Enslow (a plant-based organic fertilizer), and ii) poultry manure. The availability of dissolved nitrogen was monitored during the crop cycle by under-pressure lysimeter sampling. Plant development parameters were measured along with chlorophyll fluorescence and chlorophyll concentration of leaves. For both organic treatments, nitrate-N availability was low at the beginning of the experiment, whereas ammonium-N was high. During the experiment, ammonium availability decreased at the same time as nitrate availability increased after a few weeks and then declined again by the end of the experiment. The blood meal + Enslow treatment caused poor germination and slow growth in basil. Plant height and fresh weight was also affected by this treatment for basil but not for Pelargonium. Chlorophyll concentration was affected by treatment, with also visually detectable paler leaves in the treatment with poultry manure. There were no differences in chlorophyll fluorescence (Fv/Fm) between treatments, indicating that plants were not stressed in any of the treatments.

  • 30.
    Besharat, Zahra
    et al.
    KTH Royal Institute of Technology, Sweden.
    Yazdi, Milad Ghadami
    KTH Royal Institute of Technology, Sweden.
    Wakeham, Deborah
    KTH Royal Institute of Technology, Sweden.
    Johnson, Magnus
    KTH Royal Institute of Technology, Sweden.
    Rutland, Mark W.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials. KTH Royal Institute of Technology, Sweden.
    Gothelid, Mats
    KTH Royal Institute of Technology, Sweden.
    Gronbeck, Henrik
    Chalmers University of Technology, Sweden.
    Se-C Cleavage of Hexane Selenol at Steps on Au(111)2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 8, p. 2630-2636Article in journal (Refereed)
    Abstract [en]

    Selenols are considered as an alternative to thiols in self-assembled monolayers, but the Se-C bond is one limiting factor for their usefulness. In this study, we address the stability of the Se-C bond by a combined experimental and theoretical investigation of gas phase-deposited hexane selenol (CH3(CH2)(5)SeH) on Au(111) using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory (DFT). Experimentally, we find that initial adsorption leaves atomic Se on the surface without any carbon left on the surface, whereas further adsorption generates a saturated selenolate layer. The Se 3d component from atomic Se appears at 0.85 eV lower binding energy than the selenolate-related component. DFT calculations show that the most stable structure of selenols on Au(111) is in the form of RSe-Au-SeR complexes adsorbed on the unreconstructed Au(111) surface. This is similar to thiols on Au(111). Calculated Se 3d core-level shifts between elemental Se and selenolate in this structure nicely reproduce the experimentally recorded shifts. Dissociation of RSeH and subsequent formation of RH are found to proceed with high barriers on defect-free Au(111) terraces, with the highest barrier for scissoring R-Se. However, at steps, these barriers are considerably lower, allowing for Se-C bond breaking and hexane desorption, leaving elemental Se at the surface. Hexane is the selenol to selenolate formed by replacing the Se-C bond with a H-C bond by using the hydrogen liberated from transformation.

  • 31.
    Bełdowski, Piotr
    et al.
    UTP University of Science and Technology, Poland.
    Weber, Piotr
    Gdansk University of Technology, Poland.
    Dedinaite, Andra
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    Claesson, Per M
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    Gadomski, Adam
    UTP University of Science and Technology, Poland.
    Physical crosslinking of hyaluronic acid in the presence of phospholipids in an aqueous nano-environment2018In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 14, no 44, p. 8997-9004Article in journal (Refereed)
    Abstract [en]

    Hyaluronic acid and phospholipids are two components in the synovial joint cavity that contribute to joint lubrication synergistically. Molecular dynamics simulations were performed and hydrogen bonds in hyaluronic acid were analyzed to identify specific sites that are responsible for its physical cross-linking. Two molecular masses of hyaluronic acid, 10 kDa and 160 kDa, were considered. We use molecular dynamics simulations and the small world network approach to investigate dynamic couplings using a distance map applied to oxygen atoms in a chain of hyaluronic acid in the presence of phospholipids and water. The distance characterizing the coupling can be defined in various ways to bring out the most evident differences between various scenarios of the polymer chain conformation We show herein a physical distance understood as H-bond length and classes of these distances which are defined in a coarse-grained picture of the molecule. Simulation results indicate that addition of phospholipids has little influence on hyaluronic acid crosslinking. However, longer chains and addition of lipids promote appreciably long lasting (resilient) networks that may be of importance in biological systems. Specific sites for hydrogen bonding of phospholipids to hyaluronic acid have also been identified.

  • 32.
    Bhattacharya, Kunal
    et al.
    Karolinska Institutet, Sweden.
    Sacchetti, Cristiano
    La Jolla Institute for Allergy and Immunology, USA; University of California San Diego, USA.
    Costa, Pedro M.
    Karolinska Institutet, Sweden.
    Sommertune, Jens
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Brandner, Birgit D.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Magrini, Andrea
    University of Rome Tor Vergata, Italy.
    Rosato, Nicola
    University of Rome Tor Vergata, Italy.
    Bottini, Nunzio
    La Jolla Institute for Allergy and Immunology, USA; University of California San Diego, USA.
    Bottini, Massimo
    University of Rome Tor Vergata, Italy; Sanford Burnham Presbys Medical Discovery Institute, USA.
    Fadeel, Bengt
    Karolinska Institutet, Sweden.
    Nitric Oxide Dependent Degradation of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Implications for Intra-Articular Delivery2018In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 7, no 6, article id 1700916Article in journal (Refereed)
    Abstract [en]

    Polyethylene glycol (PEG)-modified carbon nanotubes have been successfully employed for intra-articular delivery in mice without systemic or local toxicity. However, the fate of the delivery system itself remains to be understood. In this study 2 kDa PEG-modified single-walled carbon nanotubes (PNTs) are synthesized, and trafficking and degradation following intra-articular injection into the knee-joint of healthy mice are studied. Using confocal Raman microspectroscopy, PNTs can be imaged in the knee-joint and are found to either egress from the synovial cavity or undergo biodegradation over a period of 3 weeks. Raman analysis discloses that PNTs are oxidatively degraded mainly in the chondrocyte-rich cartilage and meniscus regions while PNTs can also be detected in the synovial membrane regions, where macrophages can be found. Furthermore, using murine chondrocyte (ATDC-5) and macrophage (RAW264.7) cell lines, biodegradation of PNTs in activated, nitric oxide (NO)-producing chondrocytes, which is blocked upon pharmacological inhibition of inducible nitric oxide synthase (iNOS), can be shown. Biodegradation of PNTs in macrophages is also noted, but after a longer period of incubation. Finally, cell-free degradation of PNTs upon incubation with the peroxynitrite-generating compound, SIN-1 is demonstrated. The present study paves the way for the use of PNTs as delivery systems in the treatment of diseases of the joint.

  • 33.
    Bienert, K.
    et al.
    DBFZ, Germany.
    Shakya, S.
    DBFZ, Germany.
    Fischer, E.
    DBFZ, Germany.
    Schumacher, B.
    DBFZ, Germany.
    Rojas, M.
    DBFZ, Germany.
    Rogstrand, Gustav
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Zieliński, M.
    Universtiy of Warmia and Mazury, Poland.
    Dębowski, M.
    Universtiy of Warmia and Mazury, Poland.
    Technologies for biomethane production in small and medium scale applications – Assessment within the European project record biomap2018In: European Biomass Conf. Exhib. Proc., 2018, no 26thEUBCE, p. 586-591Conference paper (Refereed)
    Abstract [en]

    The European Horizon 2020 project “Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications”, short Record Biomap aims to foster technology solutions for a cost efficient biomethane production at small to medium scale. This includes substrate pre-treatment, digestion systems and gas upgrading processes. The project collected technology descriptions of 46 technologies which are still in their development phase and presented them on the biomethane map (https://biomethane-map.eu). All technologies with a Technology Readiness Level between 3 and 7, which are in the focus of this project, were also evaluated through an impact assessment. The presentation gives an overview of the project´s results, concentrating on the first results of the assessment for innovative technology solutions along the biomethane supply chain and especially upgrading of biogas to biomethane. The assessment includes aspects such as energy efficiency, specific technical characteristics of the systems as well as economic parameters. Results are expected to characterise those new technologies and to highlight their special application areas. In addition, the paper presents a roadmap and an EU level biomethane structural analysis as the groundwork for a more detailed strategy for market implementation of innovative technologies for small- to medium scale upgrading of biogas to biomethane.

  • 34.
    Bjerketorp, Joakim
    et al.
    SLU Swedish University of Agricultural Sciences, Sweden.
    Röling, Wilfred F. M.
    VU University Amsterdam, The Netherlands.
    Feng, Xinmei
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Garcia, Armando Hernández
    SLU Swedish University of Agricultural Sciences, Sweden.
    Heipieper, Hermann J.
    Helmholtz Centre for Environmental Research—UFZ, Germany.
    Håkansson, Sebastian
    SLU Swedish University of Agricultural Sciences, Sweden.
    Formulation and stabilization of an Arthrobacter strain with good storage stability and 4-chlorophenol-degradation activity for bioremediation2018In: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 102, no 4, p. 2031-2040Article in journal (Refereed)
    Abstract [en]

    Chlorophenols are widespread and of environmental concern due to their toxic and carcinogenic properties. Development of less costly and less technically challenging remediation methods are needed; therefore, we developed a formulation based on micronized vermiculite that, when air-dried, resulted in a granular product containing the 4-chlorophenol (4-CP)-degrading Gram-positive bacterium Arthrobacter chlorophenolicus A6. This formulation and stabilization method yielded survival rates of about 60% that remained stable in storage for at least 3 months at 4 °C. The 4-CP degradation by the formulated and desiccated A. chlorophenolicus A6 cells was compared to that of freshly grown cells in controlled-environment soil microcosms. The stabilized cells degraded 4-CP equally efficient as freshly grown cells in two different set-ups using both hygienized and non-treated soils. The desiccated microbial product was successfully employed in an outdoor pot trial showing its effectiveness under more realistic environmental conditions. No significant phytoremediation effects on 4-CP degradation were observed in the outdoor pot experiment. The 4-CP degradation kinetics from both the microcosms and the outdoor pot trial were used to generate a predictive model of 4-CP biodegradation potentially useful for larger-scale operations, enabling better bioremediation set-ups and saving of resources. This study also opens up the possibility of formulating and stabilizing also other Arthrobacter strains possessing different desirable pollutant-degrading capabilities.

  • 35.
    Boge, Lucas
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    Umerska, Anita
    INSERM U 1066, France ; Université Angers, France.
    Matougui, Nada
    INSERM U 1066, France ; Université Angers,France.
    Bysell, Helena
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    Ringstad, Lovisa
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces.
    Davoudi, Mina
    Lund University, Sweden.
    Eriksson, Jonny
    Uppsala University, Sweden.
    Edwards, Katarina
    Uppsala University, Sweden.
    Andersson, Martin
    Chalmers University of Technology, Sweden.
    Cubosomes post-loaded with antimicrobial peptides: Characterization, bactericidal effect and proteolytic stability2017In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 526, no 1-2, p. 400-412Article in journal (Refereed)
    Abstract [en]

    Novel antibiotics, such as antimicrobial peptides (AMPs), have recently attended more and more attraction. In this work, dispersed cubic liquid crystalline gel (cubosomes) was used as drug delivery vehicles for three AMPs (AP114, DPK-060 and LL-37). Association of peptides onto cubosomes was studied at two cubosome/peptide ratios using high performance liquid chromatography, ζ-potential and circular dichroism measurements. AMPs impact on the cubosome structure was investigated using small angle x-ray scattering and cryogenic transmission electron microscopy. The antimicrobial effect of the AMP loaded cubosomes was studied in vitro by minimum inhibitory concentration and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay. Different association efficacy onto the cubosomes was observed among the AMPs, with LL-37 showing greatest association (>60%). AP114 loaded cubosomes displayed a preserved antimicrobial effect, whereas for LL-37 the broad spectrum bacterial killing was reduced to only comprise Gram-negative bacteria. Interestingly, DPK-060 loaded cubosomes showed a slight enhanced effect against S. aureus and E. coli strains. Moreover, the cubosomes were found to protect LL-37 from proteolytic degradation, resulting in a significantly better bactericidal effect after being subjected to elastase, compared to unformulated peptide.

  • 36.
    Boge, Lukas
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. Chalmers University of Technology, Sweden.
    Hallstensson, Karin
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Ringstad, Lovisa
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Johansson, Jenny
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Andersson, Therese
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Davoudi, Mina
    Lund University, Sweden.
    Larsson, Per Tomas
    RISE - Research Institutes of Sweden, Bioeconomy.
    Mahlapuu, Margit
    Promore Pharma AB, Sweden; University of Gothenburg, Sweden.
    Håkansson, Joakim
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Andersson, Martin
    Chalmers University of Technology, Sweden.
    Cubosomes for topical delivery of the antimicrobial peptide LL-372018In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 134, p. 60-67, article id S0939-6411(18)31196-2Article in journal (Refereed)
    Abstract [en]

    In this study, the use of cubosomes for topical delivery of the antimicrobial peptide (AMP) LL-37 was investigated. Topical delivery of AMPs is of great interest for treatment of skin infections caused by bacteria, such as Staphylococcus aureus. AMP containing cubosomes were produced by three different preparation protocols and compared: i) pre-loading, where LL-37 was incorporated into a liquid crystalline gel, which thereafter was dispersed into nanoparticles, ii) post-loading, where LL-37 was let to adsorb onto pre-formed cubosomes, and iii) hydrotrope-loading, where LL-37 was incorporated during the spontaneously formed cubosomes in an ethanol/glycerol monooleate mixture. Particle size and size distribution were analyzed using dynamic light scattering (DLS), liquid crystalline structure by small angle x-ray scattering (SAXS) and release of LL-37 by a fluorescamine assay. Proteolytic protection of LL-37 as well as bactericidal effect after enzyme exposure was investigated. The skin irritation potential of cubosomes was examined by an in vitro epidermis model. Finally, the bacterial killing property of the cubosomes was examined by an ex vivo pig skin wound infection model with Staphylococcus aureus. Data showed that a high loading of LL-37 induced formation of vesicles in case of cubosomes prepared by sonication (pre-loading). No release of LL-37 was observed from the cubosomes, indicating strong association of the peptide to the particles. Proteolysis studies showed that LL-37 was fully protected against enzymatic attacks while associated with the cubosomes, also denoting strong association of the peptide to the particles. As a consequence, bactericidal effect after enzyme exposure remained, compared to pure LL-37 which was subjected to proteolysis. No skin irritation potential of the cubosomes was found, thus enabling for topical administration. The ex vivo wound infection model showed that LL-37 in pre-loaded cubosomes killed bacteria most efficient.

  • 37.
    Boge, Lukas
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. Chalmers University of Technology, Sweden.
    Västberg, Amanda
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Umerska, Anita
    Université Bretagne Loire, France.
    Bysell, Helena
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Eriksson, Jonny
    Uppsala University, Sweden.
    Edwards, Katarina
    Uppsala University, Sweden.
    Millqvist-Fureby, Anna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Andersson, Martin
    Chalmers University of Technology, Sweden.
    Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide2018In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 522, p. 126-135Article in journal (Refereed)
    Abstract [en]

    Liquid crystalline nanoparticles (LCNPs), e.g. cubosomes and hexosomes, are receiving more and more attraction as drug delivery vehicles. Dry powder formulation that forms LCNPs upon hydration can be advantageous to make new routes of administration accessible. In this work, we investigate use of three disaccharides (lactose, trehalose and sucrose) as protective matrices for glycerol monooleate based LCNP forming powders produced by freeze-drying. Phase behavior, particle size and size distributions at the different preparation steps were monitored by small angle x-ray scattering (SAXS) and dynamic light scattering (DLS). Particle appearance was imaged by cryogenic transmission electron microscopy (cryo-TEM). Moreover, the therapeutic relevant antimicrobial peptide AP114 (plectasin derivative) was incorporated in the formulations. Peptide encapsulation and release as well as in vitro antibacterial effect were investigated. Results showed that all freeze-dried powders did form particles with liquid crystalline structure upon hydration. However, a phase transition from the bicontinuous cubic Pn3m to the reversed hexagonal was observed, as a consequence of sugar addition and the freeze-drying procedure. Data indicates that trehalose is the preferred choice of lyo-protectant in order to maintain a mono-modal particle size distribution. In addition, antimicrobial activity of AP114-containing formulations was found to be highest for the formulation containing trehalose. The release kinetics of AP114 from the nanoparticles was strongly affected by the dimensions of the hexagonal phase. Larger dimension of the hexagonal phase, significantly improved the release of AP114 and antimicrobial activity of the formulation.

  • 38.
    Boork, Magdalena
    et al.
    RISE - Research Institutes of Sweden, Built Environment.
    Wendin, Karin
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Nordén, Johan
    RISE - Research Institutes of Sweden.
    Nilsson Tengelin, Maria
    RISE - Research Institutes of Sweden, Safety and Transport, Measurement Science and Technology.
    Innemiljö i nytt ljus: Metoder för objektiv bedömning av belysning2017Report (Other academic)
    Abstract [sv]

    Nuvarande belysningsstandarder baseras enbart på tekniska krav, såsom ljusstyrka, jämnhet och luminans. Att även inkludera upplevelsebaserade krav skulle troligen främja bättre ljuskomfort, men även mer energieffektiva ljusmiljöer och produkter. Kunskapen om hur upplevda belysningsparametrar kan beskrivas är dock begränsad. Detta hämmar fastighetsägare och brukare att precisera önskvärda ljusmiljöer, liksom belysningstillverkare att utveckla produkter för nya marknader och tillämpningar. Syftet med detta forskningsprojekt var att utveckla och tillämpa sensoriska metoder på belysning. Till skillnad från tidigare metoder möjliggör sensoriska metoder objektiva bedömningar av upplevda belysningsparametrar.

    En analytisk panel bestående av åtta personer som uppfyller särskilda urvalskriterier rekryterades och tränades att bedöma belysningsprodukter i ett multisensoriskt laboratorium på SP Sveriges Tekniska Forskningsinstitut i Borås. Metodutvecklingen fokuserade särskilt på en effektiv träningsprocedur, hantering av ögats adaption, samt bedömning av färg och skuggningar. Förutom laboratorie-försök undersöktes möjligheten att genomföra analytiska bedömningar i en verklig kontext med samma försöksuppställning och panel.

    Resultaten visar att det är möjligt att använda sensorisk metodik för att genomföra objektiva belysningsbedömningar av armaturer; paneldeltagarna kunde skilja mellan attribut och prover. Signifikanta skillnader identifierades mellan de olika armaturerna, både i form av sensoriska och fysikaliska egenskaper såsom läsbarhet och bländning. Fysikaliska och sensoriska parametrar samvarierar dock inte alltid, vilket visar att fysikaliska och sensoriska mätningar ger kompletterande information om belysningskvalitet. Vidare visade bedömningsförsök i en verklig kontext att samma resultat uppnåddes som i laboratoriet, men med lägre signifikans, vilket verifierar metodens tillämpbarhet på belysning.

    Den genererade kunskapen väntas på sikt bidra till utveckling av verktyg som stödjer kommunikationen mellan olika professioner inom ljusdesign och planering och på så vis främja mer önskvärda och energieffektiva ljusmiljöer.

  • 39.
    Borch, Elisabeth
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Green Cleaning - Utveckling av testbädden Cleaning Innovation2017Report (Other academic)
    Abstract [sv]

    En ökad användning av miljösmart teknik och förfarande vid rengöring och desinfektion i livsmedelsindustrin förväntas leda till mindre miljöpåverkan genom mindre vatten-, energi-, kemikalie- och materialförbrukning och mindre matsvinn. Detta gynnar också tillväxten hos miljöteknikföretag som bidrar med gröna lösningar. Testbädden Cleaning Innovation (www.cleaninginnovation.se) medverkar till utveckling av miljösmarta och effektiva metoder för rengöring och desinfektion i många branscher. Huvudintressenter är leverantörer/utvecklare av kemikalier, utrustning eller material; hygienföretag; livsmedelsföretag; offentliga aktörer. Cleaning Innovation, som ägs av RISE, är en öppen, oberoende testbädd och erbjuder utvärdering av teknik, kemikalier, material, utrustning och metoder. Testbädden bygger på samverkan mellan olika typer av verksamheter inom RISE (Research Institutes of Sweden) inriktade mot mikrobiologi, miljö, processteknik, certifiering, mätteknik, kemi, material, energiteknik samt med hygienteknikföretaget Lagafors AB. Inom Cleaning Innovation finns marknadskunskap, tvärvetenskaplig kompetens, analys-, beräknings- och mätutrustning, laboratorier samt testutrustningar i pilotskala. I projektet utvecklades befintlig verksamhet avseende testlokal, utrustning och produkterbjudande. Ett viktigt resultat från projektet är att vi har genomfört mer än 10 projekt där utvärdering av renhet och desinfektion görs med kunder. Eftersom detta är betydligt mer än planerat har egen finansiering blev betydligt högre än budgeterad. Detta visar på ett bra utbud och en tydlig marknad. Vi har också breddat vår målgrupp och inkluderar nu alla branscher med behov av rengöring och desinfektion; i motsats till bara livsmedelsindustrin som beskrivit i projektansökan.

    Testbädden Cleaning Innovation lanserades 29 november 2016. Cleaning Innovations utveckling i framtiden ser ljus ut och har en stark och naturlig förankring inom RISE. Framtidsplanerna involverar ett succesivt bräddande till kunder inom fler industrityper och en långsam expansion av verksamheten.

  • 40.
    Both, E M
    et al.
    Wageningen University and Research, The Netherlands.
    Nuzzo, Marine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Millqvist-Fureby, Anna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation.
    Boom, R M
    Wageningen University and Research, The Netherland.
    Schutyser, M A I
    Wageningen University and Research, The Netherland.
    Morphology development during single droplet drying of mixed component formulations and milk.2018In: Food Research International, ISSN 0963-9969, E-ISSN 1873-7145, Vol. 109, p. 448-454, article id S0963-9969(18)30328-4Article in journal (Refereed)
    Abstract [en]

    We report on the influence of selected components and their mixtures on the development of the morphology during drying of single droplets and extend the results to the morphology of whole milk powder particles. Sessile single droplet drying and acoustic levitation methods were employed to study single droplet drying. The influence of carbohydrates (lactose and maltodextrin DE12) and proteins (micellar casein or whey protein) on morphology development is very different, since upon concentration protein systems will jam and undergo a colloidal glass transition, whereas carbohydrate systems will gradually increase in viscosity as a consequence of the concentration. Whey protein gives relatively rigid shells due to jamming of the "hard sphere" proteins, while casein micelles behave as "soft spheres" that can deform after jamming, which gives flexibility to the shell during drying. The influence of the carbohydrates on the final morphology was found much larger than the influence of the proteins. Caseins influenced morphology only in mixtures with lactose at higher concentrations due to its high voluminosity. Similar observations were done for whole milk, where fat appeared to have no influence. With maltodextrin the influence of the casein was again observed in the shape and smoothness of wrinkles. Both sessile and levitated droplet drying methods provide a similar and consistent view on morphology development.

  • 41.
    Bradley, Siobhan J.
    et al.
    Victoria University of Wellington, New Zealand.
    Kroon, Renee
    Chalmers University of Technology, Sweden.
    Laufersky, Geoffry
    Victoria University of Wellington, New Zealand.
    Röding, Magnus
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Goreham, Renee V.
    Victoria University of Wellington, New Zealand.
    Gschneidtner, Tina
    Chalmers University of Technology, Sweden.
    Schroeder, Kathryn
    Victoria University of Wellington, New Zealand.
    Moth-Poulsen, Kasper
    Chalmers University of Technology, Sweden.
    Andersson, Mats
    Chalmers University of Technology, Sweden ; University of South Australia, Australia.
    Nann, Thomas
    Victoria University of Wellington, New Zealand.
    Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots2017In: Microchimica Acta, ISSN 0026-3672, E-ISSN 1436-5073, Vol. 184, no 3, p. 871-878Article in journal (Refereed)
    Abstract [en]

    Heterogeneity is an inherent property of a wealth of real-world nanomaterials and yet rarely in the reporting of new properties is its effect sufficiently addressed. Graphene quantum dots (GQDs) – fluorescent, nanoscale fragments of graphene - are an extreme example of a heterogeneous nanomaterial. Here, top-down approaches – by far the most predominant – produce batches of particles with a distribution of sizes, shapes, extent of oxidation, chemical impurities and more. This makes characterization of these materials using bulk techniques particularly complex and comparisons of properties across different synthetic methods uninformative. In particular, it hinders the understanding of the structural origin of their fluorescence properties. We present a simple synthetic method, which produces graphene quantum dots with very low oxygen content that can be suspended in organic solvents, suggesting a very pristine material. We use this material to illustrate the limitations of interpreting complex data sets generated by heterogeneous materials and we highlight how misleading this “pristine” interpretation is by comparison with graphene oxide quantum dots synthesized using an established protocol. In addition, we report on the solvatochromic properties of these particles, discuss common characterization techniques and their limitations in attributing properties to heterogeneous materials.

  • 42.
    Canali, Massimo
    et al.
    Università di Bologna, Italy.
    Amani, Pegah
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Aramyan, Lusine
    LEI, The Netherlands.
    Gheoldus, Manuela
    Deloitte Développement Durable, France.
    Moates, Graham
    Institute of Food Research, Colney, Norwich, UK.
    Östergren, Karin
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Silvennoinen, Kirsi
    Natural Resources Institute Finland (Luke), Finland.
    Waldron, Keith
    Institute of Food Research, UK.
    Vittuari, Matteo
    Università di Bologna, Bologna, Italy.
    Food Waste Drivers in Europe, from Identification to Possible Interventions2017In: Sustainability, ISSN 2071-1050, Vol. 9, article id 37Article in journal (Refereed)
    Abstract [en]

    The growing volumes of food globally lost or wasted and implications for food security and sustainability have raised the concern of researchers, governments, international organizations and grass-root movements. Much research and experiences investigating food waste causes and drivers focus on one specific segment of the food supply chain and limit the analysis to the situation of one or few countries, while the few studies of wider geographical scope also target other relevant and diversified objectives (e.g., food waste definition, quantification, environmental and economic impacts, and recommendations for interventions). This study, carried out by a network of European institutions involved in research and initiatives against food waste, focuses on the analysis of a broad area, Europe, through a wide and systematic literature review and consultation with stakeholders in international focus groups. The food supply chain was divided into seven segments and three main contexts were defined for the examination of food waste sources: Technological, Institutional (related to organisational factors, i.e., business management, economy, legislation, and policy), and Social (related to consumers’ behaviours and lifestyles). Results suggest a wide and multifaceted problem, interconnected across all stages of the food supply chain, from primary production, to final consumption. Within each context, the identified drivers have been grouped according to the possibilities and the type of interventions for food waste reduction. A final cross-contextual prioritization distinguished food waste sources related to (A) inherent characteristics of food; (B) social and economic factors; (C) individual non-readily changeable behaviours; (D) other priorities targeted by private and public stakeholders; (E) diversified factors, such as mismanagement, inefficient legislation, lack of awareness or information; and sub-optimal use of available technologies, which could be more promptly changed. Such diversification of causes calls for specific monitoring systems, targeted policy measures, and actions of individual stakeholders at each stage of the food supply chain.

  • 43.
    Casimir, Justin
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Östlund, Johanna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Holtz, Emma
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Hondo, Haris
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Eliasson, Lovisa
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Moore, Susanna
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Småskalighet som ett medel för att bana väg för framtidens livsmedel?2018Report (Other academic)
    Abstract [en]

    The food value chain system in Sweden is well established making it hard for small companies to develop new products and even harder to create new food supply systems Obstacles could lay at the beginning of the chain (food production or processing), at the end (marketing, consumer) or could even be related to the legislative regulation framing the food supply chain. Smaller actors often lack resources and networks to develop their sector. However, their degree of creativity, innovativeness, and engagement is high, and their energy is needed in the development of new sustainable food value chains.

    The aim of this project was to develop and apply a methodology for evaluating food value chains, focusing on profitable small-scale production systems in Sweden that show potential for fast development of new products that quickly reach the market. The work also included identifying Swedish raw food materials with growth potential and to identify how they could come into greater demand. Ten food value chains with high development potential in Sweden and for export were mapped and the main bottlenecks briefly described. Three food chains where selected based on a potential-difficulty-benefit matrix. The three selected food value chains were: (i) Hops, (ii) Swedish forest berries, and (iii) Land-based fish farming. These three food value chains where further studied looking at the whole value chain, from production to end consumer. Through literature review and contacts with relevant stakeholders (telephone interview, face-to-face interview, or workshop) the bottlenecks were clarified and potential solutions for increased demand where identified.

    Swedish hops production is carried out by passionate and engaged smaller actors, mostly on a hobby level, and the hops is used as an ingredient for beer. Germany and the USA produce about 75% of the worldwide production These hops varieties are not adapted to the Swedish climate and therefore result in a low volume and poor quality. However, domestic varieties have been grown in the past giving better yield under Swedish climate conditions. More work is needed to characterize the quality of Swedish hops. At the present time, knowledge about the characteristics of Swedish hops is low, explaining the lack of interest from brewers. In Sweden most hops are harvested by hand, making it nearly impossible to be profitable on the market. The mechanization of the harvesting step is necessary to move Swedish hops from a hobby to a commercial activity. No solutions are available on the Swedish market, RISE together with SLU is looking to develop a hops harvester fulfilling Swedish and EU regulations and adapted to small scale cultivation. At the end of the value chain, innovative products could increase the need for Swedish hops, for example by developing beers brewed with fresh hops. Moreover, hops have antiseptic characteristics and could potentially be used in other food products than beer.

    Only about four percent of the berries that are produced by the Swedish forests every year are picked. The largest volumes picked are for bilberry (Swedish: blåbär), lingonberry, and cloudberry and most of them are washed and frozen in Sweden. Processing of berries, however, has to a large extent moved out of the country while the products produced for the Swedish market are quite traditional, low-processed foods such as jams, juices and dessert soups. The majority of the Swedish berries mainly bilberries due to their nutritional content are exported and are further processed into value added powders or extracts in Asia and Europe. In Sweden this kind of value chain is under developed largely due to knowledge barriers and to the currently very traditional market. However, there is a great consumer interest in berries and they have a perceived healthiness also in Sweden. Consumers are also increasingly aware of the origin of berries used as ingredients in products such as jams, purees and juice, as well as in health food products. To fill this gap between consumer interest/demand and raw materials available new businesses can be developed. To facilitate such development there is a need for knowledge generation and transfer along the whole value chain (picking, processing, product development and consumer studies), which can be generated by starting up new innovation and research projects. It is also of importance to facilitate networking, for example in the ‘berry network’ (coordinated by RISE), as the creation of a new value chain will require different businesses to cooperate. Also, product development projects will need support for testing, pilot production, and possibly in finding investment funding for new equipment.

    Land-based fish farming is small in comparison to traditional fish farming in Sweden, but several actors see a great potential in this system which has a lower impact on the environment compared to conventional fish farms. For instance, the Swedish farmer federation (LRF) has invested in a land-based fish farm recently. As in other EU-countries, the number of active farms in Sweden is decreasing and some see the potential to recycle unused animal stables into fish farms. A major bottleneck for land-based fish farming is current legislation as it is based on conventional fish farming and therefore does not consider the environmental benefits of land-based systems. Knowledge should be spread to relevant authorities and policy makers to open a dialog and facilitate the development of a relevant regulatory framework. Regarding the production phase, access to sustainably produced feed and technical competence are lacking. Moreover, as the technology is costly learning through trial and error would not be recommended. A testbed dedicated to land-based fish farming could support companies who wish to try modifications to their system. Furthermore, smaller producers have difficulties in finding processing solutions for their products; e.g. slaughterhouses and conditioning. Two potential solutions would be to develop a land-based fish farm cooperative and/or mobile systems that could take care of smaller productions. Finally, the competition on the market is tough as land-based fishes are competing with large-scale conventional fish farms from Norway and Asia. To overcome this bottleneck, the sector could develop its own certification as well as increasing the consumers awareness and knowledge.

    Some conclusions could be applied to all the studied food chains. For instance, each value chain can be seen as a puzzle with many pieces. In order to develop new food value chains many separate pieces need to fall into place. Therefore, it is necessary to increase collaboration between stakeholders but also to have a stakeholder driven coordination of this collaboration. The stakeholders within the developing value chains often do not have all the resources to carry out this task, especially if they are small businesses. The development of cooperatives also seems to be a solution to overcome bottlenecks in the studied food chains. Likewise, logistics in the developing value chains have a great margin for improvement. Furthermore, this project focused on value chains where food commodities are the end product but investigating the potential for non-food uses would also be of interest.

    The method used in this project can be replicated to other value chains with potential of development. It would help the users to get a holistic view of the current bottlenecks and facilitate contact between stakeholders. The list of bottlenecks can be followed up and used as an indicator to evaluate if the value chain in moving forward.

  • 44.
    Chen, Chengdong
    et al.
    Xiamen University, China ; KTH Royal Institute of Technology, Sweden.
    Hou, Ruiqing
    Xiamen University, China ; Institute of Materials Research, Germany.
    Zhang, Fan
    KTH Royal Institute of Technology, Sweden.
    Dong, Shigang
    Xiamen University, China.
    Claesson, Per Martin
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry, Materials and Surfaces. Xiamen University, China.
    Lin, Changjian
    KTH Royal Institute of Technology, Sweden.
    Pan, Jinshan
    KTH Royal Institute of Technology, Sweden.
    Heating-Induced Enhancement of Corrosion Protection of Carbon Steel by a Nanocomposite Film Containing Mussel Adhesive Protein2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 4, p. C188-C193Article in journal (Refereed)
    Abstract [en]

    Application of protective coatings on metals may involve a thermal treatment process. In this study, the effect of thermal treatment up to 200?C on the corrosion protection was investigated for nanocomposite films composed of mussel adhesive protein (MAP), CeO2 nanoparticles and Na2HPO4 deposited on carbon steel. The morphology and microstructure of the pre-formed nanocomposite film were characterized by scanning electron microscopy/energy dispersive spectroscopy and atomic force microscopy (AFM). The changes in the chemical structure of the nanocomposite film due to the thermal treatment were investigated by infrared reflection absorption spectroscopy. The corrosion protection of the unheated and heated nanocomposite films on carbon steel was evaluated by electrochemical impedance spectroscopy and details of the corrosion process were elucidated by in-situ AFM measurements in 0.1 M NaCl solution. The results show a certain increase in the corrosion protection with time of the nanocomposite film for carbon steel. The analyses reveal that thermal treatment leads to a reduction of water molecules in the nanocomposite film, and an enhanced cross-linking and cohesion of the film due to oxidation of catechols to o-quinones. As a result, the film becomes more compact and gives improved corrosion protection for carbon steel.

  • 45.
    Chen, Si-Qian
    et al.
    Dongguan University of Technology, China.
    Lopez-Sanchez, Patricia
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Wang, Dongjie
    Tianjin University of Science and Technology, China.
    Mikkelsen, Deidre
    The University of Queensland, Australia.
    Gidley, Michael J
    The University of Queensland, Australia.
    Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter2018In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 81, p. 87-95Article in journal (Refereed)
    Abstract [en]

    Bacterial cellulose (BC) has several current and potential future uses in the food industry because of its ability to form hydrogels with distinctive properties. The texture of BC hydrogels is determined by both the cellulose fibre network and the internal dispersed water. In this study, mechanical properties of hydrated BC synthesised by six different strains of Komagataeibacter genus were investigated with regards to their extensibility, compressive strength, relaxation ability, viscoelasticity and poroelasticity. The stress/strain at failure and Young's modulus were assessed by uniaxial tensile testing. The compressive strength, relaxation ability and viscoelasticity were measured via a series of compression and small amplitude oscillatory shear steps. A poroelastic constitutive modelling simulation was used to investigate the mechanical effects of water movement. The morphology of the BC fibril network under compression was observed via scanning electron microscopy. Results showed that the mechanics of BC were highly dependent on the cellulose concentration, as well as the morphology of the fibril network. BC synthesised by ATCC 53524 was the most concentrated (0.71 wt%), and exhibited high tensile properties, stiffness and storage moduli; whereas comparatively low mechanical properties were noted for BC produced by ATCC 700178 and ATCC 10245, which contained the lowest cellulose concentration (0.18 wt%). Small deformation responses (normal stress, G') scaled with cellulose concentration for all samples, whereas larger deformation responses (Young's modulus, poroelasticity) depended on both cellulose concentration and additional factors, presumably related to network morphology. Increasing concentration and compressive coalescence of fibres in the integrated BC network reduced both the relaxation of the normal stress and the movement of water. This research aids the selection of bacterial strains to modulate the texture and mechanical properties of hydrated BC-based food systems. 

  • 46.
    Chinga-Carrasco, Gary
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Ehman, Nanci V.
    Instituto de Materiales de Misiones (IMAM), Misiones Argentina.
    Pettersson, Jennifer
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Vallejos, Maria E.
    Instituto de Materiales de Misiones (IMAM), Misiones Argentina.
    Brodin, Malin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Felissia, Fernando E.
    Instituto de Materiales de Misiones (IMAM), Misiones Argentina.
    Håkansson, Joakim
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Area, Maria C.
    Instituto de Materiales de Misiones (IMAM), Misiones Argentina.
    Pulping and Pretreatment Affect the Characteristics of Bagasse Inks for Three-dimensional Printing2018In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 6, no 3, p. 4068-4075Article in journal (Refereed)
    Abstract [en]

    Bagasse is an underutilized agro-industrial residue with great potential as raw material for the production of cellulose nanofibrils (CNF) for a range of applications. In this study, we have assessed the suitability of bagasse for production of CNF for three-dimensional (3D) printing. First, pulp fibers were obtained from the bagasse raw material using two fractionation methods, i.e. soda and hydrothermal treatment combined with soda. Second, the pulp fibers were pretreated by TEMPO-mediated oxidation using two levels of oxidation for comparison purposes. Finally, the CNF were characterized in detail and assessed as inks for 3D printing. The results show that CNF produced from fibers obtained by hydrothermal and soda pulping were less nanofibrillated than the corresponding material produced by soda pulping. However, the CNF sample obtained from soda pulp was cytotoxic, apparently due to a larger content of silica particles. All the CNF materials were 3D printable. We conclude that the noncytotoxic CNF produced from hydrothermally and soda treated pulp can potentially be used as inks for 3D printing of biomedical devices. 

  • 47.
    Claesson, Per M.
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Surface, Process and Formulation. KTH Royal Institute of Technology, Sweden.
    Dobryden, Illia
    KTH Royal Institute of Technology, Sweden.
    Li, Gen
    KTH Royal Institute of Technology, Sweden.
    He, Yunjian
    KTH Royal Institute of Technology, Sweden.
    Huang, Hui
    KTH Royal Institute of Technology, Sweden.
    Thorén, Per-Anders
    KTH Royal Institute of Technology, Sweden.
    Haviland, David B.
    From force curves to surface nanomechanical properties2017In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 35, p. 23642-23657Article in journal (Refereed)
    Abstract [en]

    Surface science, which spans the fields of chemistry, physics, biology and materials science, requires information to be obtained on the local properties and property variations across a surface. This has resulted in the development of different scanning probe methods that allow the measurement of local chemical composition and local electrical and mechanical properties. These techniques have led to rapid advancement in fundamental science with applications in areas such as composite materials, corrosion protection and wear resistance. In this perspective article, we focussed on the branch of scanning probe methods that allows the determination of surface nanomechanical properties. We discussed some different AFM-based modes that were used for these measurements and provided illustrative examples of the type of information that could be obtained. We also discussed some of the difficulties encountered during such studies.

  • 48.
    Dalvi-Isfahan, Mohsen
    et al.
    Isfahan University of Technology, Iran.
    Hamdami, Nasser
    Isfahan University of Technology, Iran.
    Xanthakis, Epameinondas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Le-Bail, Alain
    UMR GEPEA, France.
    Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields2017In: Journal of Food Engineering, ISSN 0260-8774, E-ISSN 1873-5770, Vol. 195, p. 222-234Article in journal (Refereed)
    Abstract [en]

    Freezing is the most popular and widely used food preservation method of the modern times. The freezing process of food matrices is related to their high water content and its metamorphoses into ice on cooling. The final quality of the frozen product is highly depended on the ice crystal morphology because it can cause irreversible damage on the microstructure of the food matrix. Supercooling and ice nucleation temperature need to be controlled both in suppressing and inducing the solidification to improve technological processes such as freeze drying, freeze concentration, cryopreservation, ice formation and cold-energy storage both in food industry and domestic preservation. However, the mechanism of freezing is not yet well known and it is affected by several factors. Several emerging technologies have been recently proposed for ice nucleation control during freezing. This review article is focused on the alternative freezing methods such as ultrasound waves, magnetic, electric, and electromagnetic field assisted freezing. In addition, the properties, mechanism of action and possible applications of electrofreezing are extensively discussed.

  • 49.
    Davis, Jennifer
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    De Menna, Fabio
    University of Bologna, Italy.
    Unger, Nicole
    University of Natural Resources and Life Sciences, Vienna (BOKU), Austria.
    Östergren, Karin
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Loubiere, Marion
    Deloitte Sustainability, US.
    Vittuari, Matteo
    University of Bologna, Italy.
    Generic strategy LCA and LCC: Guidance for LCA and LCC focused on prevention, valorisation and treatment of side flows from the food supply chain2017Report (Other academic)
    Abstract [en]

    Urged by the importance of resource efficiency and circular economy agenda of EU and national policy makers, many stakeholders are seeking alternatives for current surplus food or side flows within the food supply chain. Any new valorisation route for side flows (i.e. not the main product) will be associated with impacts (monetary and environmental). To allow informed decision making at all levels, from individual stakeholder to policy level, robust, consistent and science based approaches are required. The EU H2020 funded project REFRESH (Resource Efficient Food and dRink for the Entire Supply cHain) aims to contribute to food waste reduction throughout the food supply chain, and evaluate the environmental impacts and life cycle costs.

    Life Cycle Analysis (LCA) and Life Cycle Costing (LCC) are well documented and generic approaches for assessing the environmental and cost dimensions of a system. Both LCA and LCC are characterised by allowing for a large flexibility in system scoping. To allow for comparison between different options consistent approaches are required. Furthermore, there is a need to bridge the gap between assessors who might have a deep knowledge of the systems they are assessing, but are not in depth method experts on LCA or LCC. Highlighting challenging methodological aspects and encouraging the practitioner to ask the most relevant questions contributes to a better scoping practice of LCA and LCCs.

    The objective of this study was to develop a consistent approach, combining LCA and LCA specifically to assess impacts of prevention of resource inefficiencies, valorisation routes and waste handling in the food supply chain. The recommendations build on existing standards and state-of-the-art LCA/LCC research, and provide guidance on how to overcome specific methodological challenges. They focus particularly on the goal and scope stage of an LCA and Environmental LCC and on side flows from the food supply chain.

    To categorise systems in order to be assessed, the concept of “REFRESH situations” (RS) has been developed (De Mena et al., 2016; Unger et al., 2016). The four REFRESH situations (RS) are: Prevention of side flow (RS 1), side flow valorisation (RS 2), valorisation as part of waste management (RS 3), and end-of-life treatment (RS 4). The REFRESH situations can take place at any point/process in the life cycle, within the remit of any stakeholder (including consumers) and are independent of the perspective taken, i.e. of the producer of side stream or the receiver. For each REFRESH situation, specific recommendations on setting of system boundary, functional unit(s) and handling of multi-functionality in relation to the stated problem are provided (beside some other aspects). The importance to differentiate between attributional and consequential approaches is discussed in detail. This consistent approach contributes towards more harmonised use of LCA and LCC for informed decision for handling side flows in the food supply chain.

    The focus of the specific recommendations given in this report is primarily on change-oriented studies on interventions for side flows since foot print studies are to a higher degree covered in existing frameworks such as the ILCD-handbook and the PEF framework under development.

  • 50.
    de Hooge, Ilona E.
    et al.
    Wageningen University, The Netherlands.
    Oostindjer, Marije
    Norwegian University of Life Sciences, Norway.
    Aschemann-Witzel, Jessica
    Aarhus University, Denmark.
    Normann, Anne
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Muller Loose, Simone
    Chair of Food Engineering, Technische Universität Dresden, Germany ; University of South Australia, Australia.
    Lengard Almli, Valerie
    Nofima, Norway.
    This apple is too ugly for me!: Consumer preferences for suboptimal food products in the supermarket and at home2017In: Food Quality and Preference, ISSN 0950-3293, E-ISSN 1873-6343, Vol. 56, p. 80-92Article in journal (Refereed)
    Abstract [en]

    Food waste has received increasing scientific and societal attention during the last decade. One important cause of food waste is thought to be the un-willingness of supply chains and consumers to sell, purchase, and consume suboptimal or imperfect foods. Yet, empirical research on this issue is scarce and contradictory. The current research investigates under which conditions consumers purchase or consume foods that deviate from regular products in terms of appearance standards, date labelling, or damaged packaging, without deviation on the intrinsic quality or safety. An online choice experiment among 4214 consumers from five Northern European countries reveals that consumer preferences for suboptimal products differ depending on whether the consumer is in a supermarket or at home, and depending on the type of sub-optimality. Moreover, consumer choices, discount preferences, and waste behaviors of suboptimal products are influenced by demographics (nationality, age), by personality characteristics (value orientation, commitment to environmental sustainability, and perceived consumer effectiveness in saving the environment), and by individual-waste aspects (perceived food waste of the household, perceived importance of food waste, engaging in shopping/cooking). These findings provide important insights into consumer preferences for suboptimal products, and useful suggestions for supply-chain regulations on suboptimal products.

1234567 1 - 50 of 307
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4