Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gunnarsdòttir, S. A.
    et al.
    Chalmers University of Technology, Göteborg, SWEDEN.
    Rodriguez Basurto, A.
    Chalmers University of Technology, Göteborg, SWEDEN.
    Wärrmefjord, K.
    Chalmers University of Technology, Göteborg, SWEDEN.
    Söderberg, R.
    Chalmers University of Technology, Göteborg, SWEDEN.
    Lindkvist, L.
    Chalmers University of Technology, Göteborg, SWEDEN.
    Albinsson, O.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Wandebäck, F.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Hansson, S.
    Volvo Car Corporation, Göteborg, Sweden.
    Towards Simulation of Geometrical Effects of Laser Tempering of Boron Steel before Self-Pierce Riveting2016In: Procedia CIRP, ISSN 22128271, Vol. 44, p. 304-309Article in journal (Refereed)
    Abstract [en]

    The automotive industry is continuously developing and finding new ways to respond to the incremental demands of higher safety standards and lower environmental impact. As an answer to weight reduction of vehicles, the combination of boron steel and composite material is being developed along with their joining process, self-pierce riveting. Boron steel is an ultra-high strength material that needs to be locally softened before the joining process. However, the joining process deforms the part. This paper investigates factors affecting the geometrical deformation during the tempering process and lists important phenomena that need to be included when simulating the tempering process. © 2016 The Authors.

  • 2.
    Holmberg, Jonas
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser. University West, Trollhättan, Sweden.
    Steuwer, Axel
    Nelson Mandela Metropolitan University,Port Elizabeth, South Africa.
    Stormvinter, Albin
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Haakanen, Marja
    Stresstech OY, Vaajakoski, Finland.
    Berglund, Johan
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD2016In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, ISSN 0921-5093, Vol. 667, p. 199-207Article in journal (Refereed)
    Abstract [en]

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component. © 2016 Elsevier B.V.

  • 3.
    Hosseini, Seyed
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser. Chalmers University of Technology, Sweden ; AB SKF, Sweden.
    Thuvander, Mattias
    Chalmers University of Technology, Sweden.
    Klement, Uta
    Chalmers University of Technology, Sweden.
    Sundell, Gustav
    Chalmers University of Technology, Sweden.
    Ryttberg, Kristina
    AB SKF, Sweden.
    Atomic-scale investigation of carbon atom migration in surface induced white layers in high-carbon medium chromium (AISI 52100) bearing steel2017In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 130, p. 155-163Article in journal (Refereed)
    Abstract [en]

    The microstructure and chemical composition of white layers (WLs) formed during hard turning of AISI 52100 steel were studied using atom probe tomography (APT) and transmission electron microscopy (TEM). APT analyses revealed a major difference in the re-distribution of the carbon (C) atoms between WLs formed above and below the Ac1 temperature, i.e. T-WL and M-WL, respectively. In T-WL, the C-atoms segregate to grain boundaries (GBs) forming interconnected or isolated C-rich clusters, ∼5 nm, with a concentration of 9.8 ± 0.3 at.%C. Apart from the GB segregation, in M-WLs, large C-rich regions were found with 24.8 ± 0.4 at.%C. Owing to the chemical composition (stoichiometry) and element partitioning of such regions, they were assigned as θ-carbides (cementite). The APT results reveal that the original θ-carbides remain un-dissolved in the M-WLs, but might be plastically deformed due to the excessive strain that exists in hard machining process. The obtained results are in good agreement with the temperatures that are reached during formation of M-WLs. The isolated nano-sized C-clusters were assigned as off-stoichiometric carbides whereas the interconnected C-rich clusters were attributed to Cottrell atmospheres, evident by the linear shape of the C-enrichment as observed in the APT reconstructions. The C-contents in the nano-sized martensitic and ferritic grains were estimated to 0.50 ± 0.06 at.%C and ∼0.46 ± 0.02 at.%C, respectively. The C-content in the ferritic grains, beyond the C-solubility limit in ferrite (<0.1 at.%) is governed by the high dislocation density inside the grains, supported by the favorable binding energy between dislocations and C-atoms compared to C-atoms and Fe in carbides. No other evidence of redistribution of the substitutional alloying elements was observed. TEM analyses showed that T-WLs comprises of an equiaxed and nano-sized grains with well-defined cell boundaries, whereas the structure in the M-WLs comprised of elongated sub-grains formed via re-orientation of the original martensite followed by breakage/partitioning into elongated sub-grains.

  • 4.
    Lundevall, Åsa
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Sundberg, L.
    RISE.
    Mattsson, L.
    Volvo Group Trucks Technology.
    Improved glass bonding with plasma treatment2018Conference paper (Other academic)
  • 5.
    Stormvinter, Albin
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Borgenstam, Annika
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Miyamoto, Goro
    Tohoku University.
    Furuhara, Tadashi
    Inst. Materials Research, Tohoku University.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Quantitative metallography for industrial use on martensitic steels2015In: PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, p. 539-546Article in journal (Refereed)
    Abstract [en]

    The performance of powertrain components and rock tools relies on the inherent strength and hardness of ferrous martensite. Currently the industry uses experimental measurements of surface hardness and case depth to qualify their hardening processes. Often there are additional requirements on microstructure constituents, although there are no quantitative methods available to characterize ferrous martensite. Here such methodology is discussed in relation to EBSD measurements on the full practical range of Fe-C alloys. The orientation relationships between austenite and martensite along with the variant pairing tendency of martensite are determined from the EBSD data. These results are related to the well-known morphological transition from lath to plate martensite in Fe-C alloys. Quantitative metallography using EBSD has the potential to complement hardness- and residual-stress measurements when qualifying new steel grades and hardening processes in industry. It may also prove important when investigating the coupling between material properties and fatigue performance.

  • 6.
    Stormvinter, Albin
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Olofsson, A.
    Scania CVAB.
    Biwersi, K.
    Scania CVAB.
    Haglund, S.
    RISE - Research Institutes of Sweden, Swerea, Swerea KIMAB.
    Effect of hardenability and press quenching on distortion of crown wheels2014In: Thermal Process Modeling - Proceedings from the 5th International Conference on Thermal Process Modeling and Computer Simulation, ICTPMCS 2014 / [ed] Papp R.MacKenzie S.Goldstein R.Ferguson B.L., ASM International , 2014, p. 149-155Conference paper (Refereed)
    Abstract [en]

    Press quenching is used to control distortion of large transmission components, e.g. case hardened crown wheels. The unsystematic distortion arises from non-uniformity in the steel properties and processing conditions and is a major concern for gear manufactures. In the present work a methodology is developed to analyze how various properties and parameters influence the distortion during press quenching of crown wheels. To obtain realistic quenching characteristics, to be used for simulation, a number of experiments are carried out on an industrial press quenching machine. In addition, the distortion potential from hardenability is surveyed on a set of non-press quenched crown wheels and quantified by 3D- scanning. Based on the experimentally obtained quenching characteristics the press quenching process is simulated by FEM. Impact of steel properties, quenching characteristics and processing conditions on the distortion is discussed and analyzed in relation to the experiments. From the results it may be concluded that press quenching is a powerful tool that can limit the impact of distortion carriers. However, to exploit the full capability of press quenching and thereby increase process optimization it is necessary to better quantify the distortion carriers in the parts to be hardened. Copyright © 2014 ASM International ® All rights reserved.

  • 7.
    Stormvinter, Albin
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Troell, Eva
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Induction hardening - Establishing the process window for induction quenching by using experimental results and computational tools2014In: Materials Performance and Characterization, E-ISSN 2165-3992, ISSN 21653992, Vol. 3, no 4, p. 352-368Article in journal (Refereed)
    Abstract [en]

    To establish the process window for the spray quenching step of the induction hardening process is essential for quality control and optimized use of the quenching capacity supplied by the quenching unit. In general, the process window is established by an empirical approach, where the processing is related to the mechanical properties. On the other hand, there has been a rapid development of computational tools that may facilitate and accelerate process optimization. In the present work it is demonstrated how such tools, e.g., FE-simulation and multivariate analysis, can be applied to couple quenching characteristics to mechanical properties. The methodology is applied to induction hardened steel cylinders that were quenched with different flow rates, temperatures and composition of the quenchant. The results show how mechanical properties can be related to characteristics of the quenching, e.g., heat transfer coefficients and characteristics of the cooling curve. Moreover, the work discusses and exemplifies how the process window can be established and how computational tools allow the user to virtually alter the processing and estimate the impact it may have on the mechanical properties.

  • 8.
    Stormvinter, Albin
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Troell, Eva
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Senaneuch, J.
    Haglund, S.
    Impact of internal oxidation and quenching path on fatigue of powertrain components2015In: ASM International - 28th Heat Treating Society Conference, HEAT TREATING 2015, p. 498-503Article in journal (Refereed)
    Abstract [en]

    Atmospheric case hardening of powertrain components may cause internal oxidation and thus reduce hardenability at the surface zone. This may affect the fatigue strength, which restricts the maximum cyclic load on steel components and hence is a major impediment for powertrain development and design. Here we have investigated the effect of furnace gas atmosphere composition and quenching path on fatigue properties of powertrain components. The results show that the detrimental effect of internal oxidation on fatigue may be compensated for by altering of the furnace atmosphere. Moreover, it is shown that the quenching path below the martensite start temperature also has an impact on the fatigue properties. These experiments were done in a full-scale industrial furnace on steel bars in l6MnCr5 and 2ONiMo9-7F. 

  • 9.
    Stormvinter, Albin
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Olofsson, A.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Troell, Eva
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Effects of Hardenability and Quenching on Distortion of Steel Components2015Conference paper (Refereed)
  • 10.
    Stormvinter, Albin
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Senaneuch, Jerome
    RISE - Research Institutes of Sweden, Swerea, Swerea KIMAB.
    Haglund, Sven
    RISE - Research Institutes of Sweden, Swerea, Swerea KIMAB.
    Kristoffersen, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Troell, Eva
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Impacts of Internal Oxidation and Quenching Path on Fatigue of Powertrain Components2015In: Proceedings of the 28th ASM Heat Treating Society Conference and Exhibition, ASM2015, 2015, p. 504-509Conference paper (Refereed)
  • 11.
    Troell, Eva
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Lindell, Hans
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF.
    Grétarsson, Snaevar Leo
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Zero Vibration Injuries: Achieved by Machine Redesign2018In: Proceedings of the 7thAmerican Conference on Human Vibration 2018 / [ed] Peter W. Johnson, 2018, p. 7-8Conference paper (Other academic)
  • 12.
    Wiklund, Daniel
    et al.
    RISE - Research Institutes of Sweden, Swerea, Swerea IVF, Tillverkningsprocesser.
    Larsson, Mats
    Högskolan Väst.
    Phenomenological friction model in deep drawing of aluminum sheet metals2018In: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 418, no 1Article in journal (Refereed)
    Abstract [en]

    Friction is an important parameter in sheet metal forming since it influences the flow of material in the process. Consequently, it is also an important parameter in the design process of new stamping dies when numerical simulations are utilized. Today, the most commonly used friction model in forming simulations is Coulomb’s friction which is a strong simplification of the tribological system conditions and a contributory cause of discrepancy between simulation and physical experiments. There are micromechanical models available but with an inherent complexity that results in limited transparency for users. The objective in this study was to design a phenomenological friction model with a natural level of complexity when Coulomb’s friction is inadequate. The local friction model considers implicit properties of tool and sheet surface topography, lubricant viscosity, sheet metal hardness and strain, and process parameters such as sliding speed and contact pressure. The model was calibrated in a Bending-Under-Tension test (BUT) and the performance was evaluated in a cross shaped geometry (X-die). The results show a significant improvement of the simulation precision and provide the user a transparent tribological system. © Published under licence by IOP Publishing Ltd.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.4