Development of a new, safe, and scalable route to the GSK3β inhibitor, AZD8926, is presented. In brief, the process constitutes of (i) a synthesis of 1-(pyran-4-yl)-2-trifluoromethyl-imidazole, 14; (ii) a Ziegler-type coupling of lithiated 14 with commercially available 2-chloro-5-fluoropyrimidine via 1,2-addition over the 3,4-C-N bond; (iii) a copper-catalyzed dehydrogenative aromatization using oxygen as the stoichiometric oxidant; and (iv) an aromatic C-N bond formation using either a Buchwald-Hartwig coupling or an acid-catalyzed amination. This process circumvents the main issue in the early-phase route, in which serious process safety constraints were associated with the hazardous properties of the structure, formation, and reduction of 5-methyl-4- nitroisoxazole, 2 (4200 J/g). The new process has been demonstrated on a multigram, 2-L scale. The overall yield was improved from 4 to 14%, and the number of steps decreased from 12 to 10.