Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Jonsson, Leif
    et al.
    Linköping University, Sweden; Ericsson AB, Sweden.
    Borg, Markus
    RISE., Swedish ICT, SICS, Security Lab. Lund University, Sweden.
    Broman, David
    KTH Royal Institute of Technology, Sweden; UC Berkeley, USA.
    Sandahl, Kristian
    Linköping University, Sweden.
    Eldh, Sigrid
    Ericsson AB, Sweden.
    Runeson, Per
    Lund University, Sweden.
    Automated Bug Assignment: Ensemble-based Machine Learning in Large Scale Industrial Contexts2016Ingår i: Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616, Vol. 21, nr 4, s. 1533-1578Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bug report assignment is an important part of software maintenance. In particular, incorrect assignments of bug reports to development teams can be very expensive in large software development projects. Several studies propose automating bug assignment techniques using machine learning in open source software contexts, but no study exists for large-scale proprietary projects in industry. The goal of this study is to evaluate automated bug assignment techniques that are based on machine learning classification. In particular, we study the state-of-the-art ensemble learner Stacked Generalization (SG) that combines several classifiers. We collect more than 50,000 bug reports from five development projects from two companies in different domains. We implement automated bug assignment and evaluate the performance in a set of controlled experiments. We show that SG scales to large scale industrial application and that it outperforms the use of individual classifiers for bug assignment, reaching prediction accuracies from 50 % to 89 % when large training sets are used. In addition, we show how old training data can decrease the prediction accuracy of bug assignment. We advice industry to use SG for bug assignment in proprietary contexts, using at least 2,000 bug reports for training. Finally, we highlight the importance of not solely relying on results from cross-validation when evaluating automated bug assignment.

    Ladda ner fulltext (pdf)
    FULLTEXT01
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf