Ändra sökning
Avgränsa sökresultatet
1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Appleby, Graham
    et al.
    NERC Space Geodesy Facility, United Kingdom.
    Behrend, Dirk
    NASA, USA.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Donovan, Howard
    Honeywell Technology Solutions, USA.
    Emerson, Curtis
    NASA, USA.
    Esper, Jaime
    NASA, USA.
    Hase, Hayo
    AGGO, Germany.
    Long, Jim
    NASA, USA.
    Ma, Chopo
    NASA, USA.
    McCormick, David
    NASA, USA.
    Noll, Carey
    NASA, USA.
    Pavlis, Erricos C
    University of Maryland, USA.
    Ferrage, Pascal
    CNES, France.
    Pearlman, Michael
    Harvard-Smithsonian Center for Astrophysics, USA.
    Saunier, Jerome
    IGN Institut national de l'information géographique et forestiere, France.
    Stowers, David
    NASA, USA.
    Wetzel, Scott
    Honeywell Technology Solutions, USA.
    GGOS Requirements for Core Sites2015Rapport (Refereegranskat)
    Abstract [en]

    The Global Geodetic Observing System, an entity under the International Association of Geodesy (IAG) has undertaken the task of advocating for the geodetic infrastructure necessary to meet the global change and other societal challenges, and defining the requirements for the geodetic observatories that constitute it. In this role, GGOS will work with the IAG Measurement Services, the scientific Community, and national and international agencies to bring a combined effort to bear on these areas of international concern. A major task within this effort is the upgrading, expansion, and maintenance of the global ground network of co-located Core Sites for geodesy to enable the realization and maintenance of the International Terrestrial Reference Frame (ITRF), Earth orientation parameters and precision orbits to meet the needs of Earth orbiting missions, Earth Surface and interior programs, and deep space navigation. GGOS and the geodetic Core Sites should be compliant with the UN resolution from Feb 26, 2015. See http://www.unggrf.org/. This Site Requirements Document outlines what is needed for that compliance.

  • 2.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Evaluation of GNSS Monument Stability2010Ingår i: IAG Symposium on Reference Frames for Applications in Geosciences, REFAG 2010, 2010, , s. 45-50Konferensbidrag (Refereegranskat)
  • 3.
    Bergstrand, Sten
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Säkerhet och transport, Mätteknik.
    Herbertsson, Magnus
    RISE - Research Institutes of Sweden (2017-2019), Säkerhet och transport, Mätteknik.
    Rieck, Carsten
    RISE - Research Institutes of Sweden (2017-2019), Säkerhet och transport, Mätteknik.
    Spetz, Jörgen
    RISE - Research Institutes of Sweden (2017-2019), Säkerhet och transport, Mätteknik.
    Svantesson, Claes-Göran
    RISE - Research Institutes of Sweden (2017-2019), Säkerhet och transport, Mätteknik.
    Haas, Rüdiger
    Chalmers University of Technology, Sweden.
    A gravitational telescope deformation model for geodetic VLBI2019Ingår i: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394, Vol. 93, nr 5, s. 669-680Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have measured the geometric deformations of the Onsala 20 m VLBI telescope utilizing a combination of laser scanner, laser tracker, and electronic distance meters. The data put geometric constraints on the electromagnetic raypath variations inside the telescope. The results show that the propagated distance of the electromagnetic signal inside the telescope differs from the telescope’s focal length variation, and that the deformations alias as a vertical or tropospheric component. We find that for geodetic purposes, structural deformations of the telescope are more important than optic properties, and that for geodetic modelling the variations in raypath centroid rather than focal length should be used. All variations that have been identified as significant in previous studies can be quantified. We derived coefficients to model the gravitational deformation effect on the path length and provide uncertainty intervals for this model. The path length variation due to gravitational deformation of the Onsala 20 m telescope is in the range of 7–11 mm, comparing elevation 0$$^{\circ }$$∘and 90$$^{\circ }$$∘, and can be modelled with an uncertainty of 0.3 mm.

  • 4.
    Bergstrand, Sten
    et al.
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Jarlemark, Per
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Herbertsson, Magnus
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Quantifying errors in GNSS antenna calibrations: Towards in situ phase center corrections2020Ingår i: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394, Vol. 94, nr 10, artikel-id 105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We evaluated the performance of GNSS absolute antenna calibrations and its impact on accurate positioning with a new assessment method that combines inter-antenna differentials and laser tracker measurements. We thus separated the calibration method contributions from those attainable by various geometric constraints and produced corrections for the calibrations. We investigated antennas calibrated by two IGS-approved institutions and in the worst case found the calibration’s contribution to the vertical component being in excess of 1 cm on the ionosphere-free frequency combination L3. In relation to nearby objects, we gauge the 1 σ accuracies of our method to determine the antenna phase centers within ±0.38 mm on L1 and within ±0.62 mm on L3, the latter applicable to global frame determinations where atmospheric influence cannot be neglected. In addition to antenna calibration corrections, the results can be used with an equivalent tracker combination to determine the phase centers of as-installed individual receiver antennas at system critical sites to the same level without compromising the permanent installations. © 2020, The Author(s).

  • 5.
    Bergstrand, Sten
    et al.
    RISE - Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Ralf, Schmid
    German Geodetic Research Institute, Germany.
    Activities of the IERS Working Group on Site Survey and Co-location2016Ingår i: International VLBI Service for Geodesy and Astrometry 2016 General Meeting Proceedings: "New Horizons with VGOS" / [ed] Dirk Behrend, Karen D. Baver, and Kyla L. Armstrong, Greenbelt, MD: National Aeronautics and Space Administration , 2016, s. 113-117Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The objective of the International Earth Rotation and Reference Systems Service (IERS) Working Group on Site Survey and Co-location is to improve local measurements at space geodesy sites. We appointed dedicated Points of Contact (POC) with the four different services of IERS as well as the NASA Space Geodesy Project in order to improve the efficiency of internal communication within the working group. Following the REFAG2014 conference, the POCs agreed on a common and general terminology on local ties that clarifies the communication regarding site surveying and co-location issues between and within the IERS services. We give brief introductions to the different observation techniques and mention some contemporary issues related to site surveying and co-location.

  • 6.
    Bergstrand, Sten
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Saracoglu, Erhan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad.
    Continuous monitoring of a long-span cable-stayed timber bridge2014Ingår i: Journal of Civil Structural Health Monitoring, ISSN 2190-5452, Vol. 5, nr 2, s. 183-194Artikel i tidskrift (Refereegranskat)
  • 7.
    Emardson, Ragne
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Jarlemark, Per
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Johansson, Jan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik. RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Ionospheric Effects on Network-RTK2011Rapport (Refereegranskat)
    Abstract [en]

    A part of the atmosphere is ionized by the UV radiation from the Sun. This part is often referred to as the ionosphere. The resulting free electrons influence the GNSS signals as they propagate through the ionosphere. We have studied how the spatial variations of electron density in the ionosphere affect measurements with network-RTK. The aim is to predict what we can expect from measurements during the next solar maximum that is expected to occur around 2012. In order to perform a spatial characterization of the ionosphere, we have used archived GPS data from SWEPOS from a five year period, 1999-2004, around the previous solar maximum. We find that the effect of the ionospheric spatial variability on network-RTK measurements is greater during night time than during day time. It is also clear that the effect is larger for northern Sweden than for the southern part. This is especially true during night time. The effect is also largest in the months October and November and smallest in June and July. Also the number of cycle slips is larger in northern Sweden than in southern Sweden. We find that when monitoring the ionosphere and its influence on network-RTK performance it is desirable to have several different geographical regions under observation. The effects in northern Sweden may, for example not be that relevant for a user in southern Sweden. In this report we define the ionospheric delay errors as the standard deviation of the difference between the ionospheric delay at L1 at one location and the estimated value of this based on the three surrounding reference stations with 70 km separation. Using GNSS equipment that is state-of-the art around 2010, we find that when conditions are such that the ionospheric delay error is below 10 mm, which occurs some 70% of the time, a rover is able to fix the ambiguities more than 90% of the time. This ability decreases with increasing ionospheric variability and when the ionospheric delay error is larger than 25 mm, which occurs some 10% of the time, the rover ability to fix is less than 50%. When measuring with network-RTK during the next solar maximum, approximately, 80% of the time, we have conditions such that a rover has at least 75% chance of fixing the solutions. Overall the probability to find a correct fix solution when performing RTK measurements during the next solar maximum is approximately 85% and the mean time to fix is 55 seconds.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 8.
    Emardson, Ragne
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Jarlemark, Per
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Johansson, Jan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik. RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Bergstrand, Sten
    Ionospheric corrections for accurate positioning in real time.2005Ingår i: Proceedings: Radiovetenskap och kommunikation 05 - RVK 05, 2005Konferensbidrag (Refereegranskat)
  • 9.
    Emardson, Ragne
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Jarlemark, Per
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Johansson, Jan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik. RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Nilsson, Tobias
    Measurement accuracy in Network-RTK2009Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 10.
    Guillory, J
    et al.
    LCM Laboratoire Commun de Métrologie, France.
    Truong, D
    LCM Laboratoire Commun de Métrologie, France.
    Wallerand, J-P
    LCM Laboratoire Commun de Métrologie, France.
    Svantesson, Claes-Göran
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Herbertsson, Magnus
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Bergstrand, Sten
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    An SI-traceable multilateration coordinate measurement system with half the uncertainty of a laser tracker2023Ingår i: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 34, nr 6, artikel-id 065016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have validated the performance of a prototype coordinate measurement system based on multilateration by comparing it to a laser tracker, i.e. a well-proven instrument widely used in the industry. After establishing the uncertainty budget of the different systems, we performed position measurements with both instruments on common targets. Using the estimated uncertainties associated with the measurements, we found that the multilateration system provided lower position uncertainties than the laser tracker: on average 18 µm versus 33 µm for distances up to 12 m. The uncertainties represented by confidence ellipsoids are compatible between the two systems: for confidence regions of 95% probability, they overlap as expected, i.e. in 94% of the cases. We also measured the length of a 0.8 m long reference scale bar with the multilateration system at an error of only 2 µm. This cross-comparison is a new and key step in the characterization of this SI-traceable multilateration system. © 2023 The Author(s).

  • 11.
    Haas, Rüdiger
    et al.
    Chalmers University of Technology, Sweden.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut.
    Lehner, W.
    Vienna University of Technology, Austria.
    Evaluation of GNSS Monument Stability2013Ingår i: International Association of Geodesy Symposia, 2013, Vol. 138, s. 45-50Konferensbidrag (Refereegranskat)
    Abstract [en]

    We report on an evaluation of the stability of four different GNSS monuments that was conducted in the summer of 2010. The monuments were monitored by forward intersections using a survey system consisting of two robotic total stations and a set of retro reflecting prisms. The system was operated for almost 3 months, performing observations in two faces with a repetition cycle of 5 min. Movements in excess of 6 mm were detected. The results show clear evidence that the detected deformations are related to variations in temperature and solar radiation and can be suppressed by simple shielding of the monument. Furthermore, our project is a step towards the realization of continuous cartesian connections at geodetic fundamental stations. Keywords Geodetic monitoring, GNSS monuments, Local-tie monitoring, Fundamental geodetic stations, Global geodetic observing system (GGOS), Co-located space geodetic techniques, Continuous cartesian connections (CCC).

  • 12.
    Jarlemark, Per
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Emardson, Ragne
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Johansson, Jan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik. RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Hedling, G
    Error Sources in Network RTK2011Ingår i: Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), 2011, , s. 2175-2178Konferensbidrag (Refereegranskat)
    Abstract [en]

    Real Time Kinematic (RTK) is a system that utilises Global Navigation Satellite Systems (GNSS) to provide accurate positioning in real time. The contribution of the troposphere, the ionosphere and local effects, such as receiver noise and multipath are the most significant error sources affecting network RTK measurements We show how measurements with network RTK are affected by these different error sources under varying circumstances such as time of year or time of the day, network infrastructure, satellite systems and processing techniques We find that, for Scandinavian conditions, the effect of the ionospheric spatial variability on network RTK measurements is greater during nighttime than during daytime. The effect is also largest in the months October and November and smallest in the months of June and July. A densification of the reference network from 70 km to 35 km between the reference stations results in improved measurements. The error in the measured vertical position coordinate is reduced from 26 mm to 17 mm. The access to new GNSS reduces error in the measured vertical position coordinate from 26 to 21 mm. By using the L3-combination, the contribution from the ionosphere is reduced to virtually zero. However, this has been at the expense of the local errors

  • 13.
    Jarlemark, Per
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Emardson, Ragne
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Kommunikation.
    Johansson, Jan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik. RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Lidberg, Martin
    Jonsson, Bertil
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Byggnadsfysik och innemiljö (ETi ).
    Measurement accuracy in Network-RTK2010Ingår i: Bolletino di Geodesia e Scienze Affini, Vol. 69, s. 2-3Artikel i tidskrift (Övrigt vetenskapligt)
  • 14.
    Matus, M.
    et al.
    BEV Federal Office of Metrology and Surveying, Austria.
    Haas, S.
    BEV Federal Office of Metrology and Surveying, Austria.
    Piree, H.
    SMD Service Métrologie Scientifique, Belgium.
    Gavalyugov, V.
    BIM Bulgarian Institute of Metrology, Bulgaria.
    Tamakyarska, D.
    BIM Bulgarian Institute of Metrology, Bulgaria.
    Thalmann, R.
    METAS Federal Institute of Metrology, Switzerland.
    Balling, P.
    CMI Czech Metrology Institute, Czech Republic.
    Garnæs, J.
    DFM Danish Fundamental Metrology, Denmark.
    Hald, J.
    DFM Danish Fundamental Metrology, Denmark.
    Farid, N.
    NIS National Institute of Standards, Egypt.
    Prieto, E.
    CEM Centro Espanol de Metrologia, Spain.
    Lassila, A.
    MIKES Centre for Metrology and Accreditation, Finland.
    Salgado, J. A.
    LNE Laboratoire National de Métrologie et d'Essais, France.
    Lewis, A.
    NPL National Physical Laboratory, UK.
    Bandis, C.
    EIM Hellenic Institute of Metrology, Greece.
    Mudronja, V.
    HMI Croatian Metrology Institute, Croatia.
    Banreti, E.
    MKEH Hungarian Trade Licensing Office, Hungary.
    Balsamo, A.
    INRIM Istituto Nazionale di Ricerca Metrologica, Italy.
    Pedone, P.
    INRIM Istituto Nazionale di Ricerca Metrologica, Italy.
    Bergmans, R.
    VSL Dutch Metrology Institute, The Netherlands.
    Karlsson, H.
    JV Norwegian Metrology Service, Norway.
    Ramotowski, Z.
    GUM Central Office of Measures, Poland.
    Eusébio, L.
    IPQ Portuguese Quality Institute, Portugal.
    Saraiva, F.
    IPQ Portuguese Quality Institute, Portugal.
    Duta, A.
    INM National Institute of Metrology, Romania.
    Zelenika, S.
    DMDM Directorate of Measures and Precious Metals, Serbia.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Fira, R.
    SMU Slovak Institute of Metrology, Slovakia.
    Yandayan, T.
    TÜBİTAK UME National Metrology Institute, Turkey.
    Şendoğdu, D.
    TÜBİTAK UME National Metrology Institute, Turkey.
    Ganioğlu, O.
    TÜBİTAK UME National Metrology Institute, Turkey.
    Akgöz, S. A.
    TÜBİTAK UME National Metrology Institute, Turkey.
    Franke, P.
    NPL National Physical Laboratory, UK.
    Key Comparison EURAMET.L-K1.2011 Measurement of gauge blocks by interferometry2016Ingår i: Metrologia, ISSN 0026-1394, E-ISSN 1681-7575, Vol. 53, nr 1AArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    The key comparison EURAMET.L-K1.2011 on gauge blocks was carried out in the framework of a EURAMET project starting in 2012 and ending in 2015. It involved the participation of 24 National Metrology Institutes from Europe and Egypt, respectively. 38 gauge blocks of steel and ceramic with nominal central lengths between 0.5 mm and 500 mm were circulated. The comparison was conducted in two loops with two sets of artifacts. A statistical technique for linking the reference values was applied. As a consequence the reference value of one loop is influenced by the measurements of the other loop although they did not even see the artifacts of the others. This influence comes solely from three "linking laboratories" which measure both sets of artifacts. In total there were 44 results were not fully consistent with the reference values. This represents 10% of the full set of 420 results which is a considerable high number. At least 12 of them are clearly outliers where the participants have been informed by the pilot as soon as possible. The comparison results help to support the calibration and measurement capabilities (CMCs) of the laboratories involved in the CIPM MRA.

  • 15.
    Seppä, Santeri Jeremias
    et al.
    MIKES Centre for Metrology and Accreditation, Finland.
    Korpelainen, Virpi
    MIKES Centre for Metrology and Accreditation, Finland.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Karlsson, Helge
    Justervesenet, Norway.
    Lillepea, Lauri
    AS Metrosert, Estonia.
    Lassila, Antti
    MIKES Centre for Metrology and Accreditation, Finland.
    Intercomparison of lateral scales of scanning electron microscopes and atomic force microscopes in research institutes in Northern Europe2014Ingår i: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 25, nr 4, artikel-id 44013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An intercomparison of lateral scales of scanning electron microscopes (SEM) and atomic force microscopes (AFM) in various research laboratories in Northern Europe was organized by the local national metrology institutes. In this paper are presented the results of the comparison, with also an example uncertainty budget for AFM grating pitch measurement. Grating samples (1D) were circulated among the participating laboratories. The participating laboratories were also asked about the calibration of their instruments. The accuracy of the uncertainty estimates seemed to vary largely between the laboratories, and for some laboratories the appropriateness of the calibration procedures could be considered. Several institutes (60% of all results in terms of En value) also had good comprehension of their measurement capability. The average difference from reference value was 6.7 and 10.0 nm for calibrated instruments and 20.6 and 39.9 nm for uncalibrated instruments for 300 nm and 700 nm gratings, respectively. The correlation of the results for both nominally 300 and 700 nm gratings shows that a simple scale factor calibration would have corrected a large part of the deviations from the reference values.

  • 16.
    Telada, Souichi
    et al.
    NMIJ/AIST, Japan.
    Kajima, Mariko
    NMIJ/AIST, Japan.
    Lai, Cynthia
    NMC, Singapore.
    Tonmueanwai, Anusorn
    NIMT, Thailand.
    Cox, Peter
    NMIA, Australia.
    Chiu, Henry
    SCL, Hong Kong China.
    Tang, George
    SCL, Hong Kong China.
    Kruger, Oelof
    NMISA, South Africa.
    Greeff, Pieter
    NMISA, South Africa.
    Salgado, José
    LNE, France.
    Elfström, Jan
    RISE Research Institutes of Sweden.
    Bergstrand, Sten
    RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
    Costa, Pedro Bastos
    INMETRO, Brazil.
    Barros, Wellington Santos
    INMETRO, Brazil.
    Rossellino, Alejandro Acquarone
    LATU, Uruguay.
    Tsai, Chin-Lung
    CMS/ITRI, Chinese Taipei.
    Anh, Ngo Ngoc
    VMI, Vietnam.
    Xiangbing, Liu
    NIM, China.
    Al-Kafri, Adel
    NSCL, Syria.
    Eom, Taebong
    KRISS, South Korea.
    Report on APMP key comparison: calibration of line scale (APMP.L-K7)2022Ingår i: Metrologia, Vol. 59, nr 1A, artikel-id 04006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A regional key comparison on calibration of a line scale, APMP.L-K7 was conducted. KRISS acted as the pilot laboratory, and a total of 15 National Metrology Institutes, (10 from APMP, 3 from EURAMET, 1 from SIM, and 1 from AFRIMETS) have participated in this comparison, where a 500 mm line scale made of low thermal expansion material was circulated during the period from April 2015 to December 2016. This document presents the approved report of the results of this comparison. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  • 17.
    Thalmann, R.
    et al.
    METAS Federal Institute of Metrology, Switzerland.
    Nicolet, A.
    METAS Federal Institute of Metrology, Switzerland.
    Meli, F.
    METAS Federal Institute of Metrology, Switzerland.
    Picotto, G. B.
    INRIM Istituto Nazionale di Ricerca Metrologica, Italy.
    Matus, M.
    BEV Federal Office of Metrology and Surveying, Austria.
    Carcedo, L.
    CEM Centro Espanol de Metrologia, Spain.
    Hemming, B.
    MIKES Centre for Metrology and Accreditation, Finland.
    Ganioğlu, O.
    TÜBİTAK UME National Metrology Institute, Turkey.
    De Chiffre, L.
    DTU Technical University of Denmark, Denmark.
    Saraiva, F.
    IPQ Portuguese Quality Institute, Portugal.
    Bergstrand, Sten
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Massa, kraft, längd och tryck.
    Zelenika, S.
    DMDM Directorate of Measures and Precious Metals, Serbia.
    Tonmueanwai, A.
    NIMT National Institute of Metrology, Thailand.
    Tsai, C. -L.
    CMS Center for Measurement Standards, Taiwan.
    Shihua, W.
    NMC National Metrology Centre, Singapore.
    Kruger, O.
    NMISA National Metrology Institute of South Africa, South Africa.
    de Souza, M. M.
    INMETRO National Institute of Metrology Standardization and Industrial Quality, Brazil.
    Salgado, J. A.
    LNE Laboratoire National de Métrologie et d'Essais, France.
    Ramotowski, Z.
    GUM Central Office of Measures, Poland.
    Key comparison EURAMET.L-K8.2013 calibration of surface roughness standards2016Ingår i: Metrologia, ISSN 0026-1394, E-ISSN 1681-7575, Vol. 53, nr 1AArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    The key comparison EURAMET.L-K8.2013 on roughness was carried out in the framework of a EURAMET project starting in 2013 and ending in 2015. It involved the participation of 17 National Metrology Institutes from Europe, Asia, South America and Africa representing four regional metrology organisations. Five surface texture standards of different type were circulated and on each of the standards several roughness parameters according to the standard ISO 4287 had to be determined. 32 out of 395 individual results were not consistent with the reference value. After some corrective actions the number of inconsistent results could be reduced to 20, which correspond to about 5% of the total and can statistically be expected. In addition to the material standards, two softgauges were circulated, which allow to test the software of the instruments used in the comparison. The comparison results help to support the calibraton and measurement capabilities (CMCs) of the laboratories involved in the CIPM MRA.

1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf