Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Karazisis, Dimitrios
    et al.
    University of Gothenburg, Sweden.
    Omar, Omar
    Imam Abdulrahman Bin Faisal University, Saudi Arabia.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Thomsen, Peter
    University of Gothenburg, Sweden.
    Rasmusson, Lars
    University of Gothenburg, Sweden; Linköping University Hospital, Sweden.
    Molecular Response to Nanopatterned Implants in the Human Jaw Bone2021Ingår i: ACS Biomaterials Science & Engineering, E-ISSN 2373-9878, Vol. 7, nr 12, s. 5878-5889Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Implant surface modification by nanopatterning is an interesting route for enhancing osseointegration in humans. Herein, the mol. response to an intentional, controlled nanotopog. pattern superimposed on screw-shaped titanium implants is investigated in human bone. When clin. implants are installed, addnl. two mini-implants, one with a machined surface (M) and one with a machined surface superimposed with a hemispherical nanopattern (MN), are installed in the posterior maxilla. In the second-stage surgery, after 6-8 wk, the mini-implants are retrieved by unscrewing, and the implant-adherent cells are subjected to gene expression anal. using quant. polymerase chain reaction (qPCR). Compared to those adherent to the machined (M) implants, the cells adherent to the nanopatterned (MN) implants demonstrate significant upregulation (1.8- to 2-fold) of bone-related genes (RUNX2, ALP, and OC). No significant differences are observed in the expression of the analyzed inflammatory and remodeling genes. Correlation anal. reveals that older patient age is associated with increased expression of proinflammatory cytokines (TNF-α and MCP-1) on the machined implants and decreased expression of pro-osteogenic factor (BMP-2) on the nanopatterned implants. Controlled nanotopog., in the form of hemispherical 60 nm protrusions, promotes gene expressions related to early osteogenic differentiation and osteoblastic activity in implant-adherent cells in the human jaw bone.

  • 2. Leblanc, K. J.
    et al.
    Niemi, S. R.
    Bennett, A. I.
    Harris, Kathryn L
    University of Florida, USA.
    Schulze, K. D.
    Sawyer, W. G.
    Taylor, C.
    Angelini, T. E.
    Stability of High Speed 3D Printing in Liquid-Like Solids2016Ingår i: ACS Biomaterials Science & Engineering, E-ISSN 2373-9878, Vol. 2, nr 10, s. 1796-1799Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fluid instabilities limit the ability of features to hold their shape in many types of 3D printing as liquid inks solidify into written structures. By 3D printing directly into a continuum of jammed granular microgels, these instabilities are circumvented by eliminating surface tension and body forces. However, this type of 3D printing process is potentially limited by inertial instabilities if performed at high speeds where turbulence may destroy features as they are written. Here, we design and test a high-speed 3D printing experimental system to identify the instabilities that arise when an injection nozzle translates at 1 m/s. We find that the viscosity of the injected material can control the Reynold's instability, and we discover an additional, unanticipated instability near the top surface of the granular microgel medium.

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf