Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Dong, Guojun
    et al.
    University of Copenhagen, Denmark.
    Bate, Andrew
    GSK, United Kingdom; London School of Hygiene and Tropical Medicine, United Kingdom.
    Haguinet, François
    GSK, United Kingdom.
    Westman, Gabriel
    Uppsala University, Sweden.
    Dürlich, Luise
    RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Uppsala University, Sweden.
    Hviid, Anders
    University of Copenhagen, Denmark; Statens Serum Institut, Denmark.
    Sessa, Maurizio
    University of Copenhagen, Denmark.
    Optimizing Signal Management in a Vaccine Adverse Event Reporting System: A Proof-of-Concept with COVID-19 Vaccines Using Signs, Symptoms, and Natural Language Processing2024Ingår i: Drug Safety, ISSN 0114-5916, E-ISSN 1179-1942, Vol. 47, nr 2, s. 173-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introduction: The Vaccine Adverse Event Reporting System (VAERS) has already been challenged by an extreme increase in the number of individual case safety reports (ICSRs) after the market introduction of coronavirus disease 2019 (COVID-19) vaccines. Evidence from scientific literature suggests that when there is an extreme increase in the number of ICSRs recorded in spontaneous reporting databases (such as the VAERS), an accompanying increase in the number of disproportionality signals (sometimes referred to as ‘statistical alerts’) generated is expected. Objectives: The objective of this study was to develop a natural language processing (NLP)-based approach to optimize signal management by excluding disproportionality signals related to listed adverse events following immunization (AEFIs). COVID-19 vaccines were used as a proof-of-concept. Methods: The VAERS was used as a data source, and the Finding Associated Concepts with Text Analysis (FACTA+) was used to extract signs and symptoms of listed AEFIs from MEDLINE for COVID-19 vaccines. Disproportionality analyses were conducted according to guidelines and recommendations provided by the US Centers for Disease Control and Prevention. By using signs and symptoms of listed AEFIs, we computed the proportion of disproportionality signals dismissed for COVID-19 vaccines using this approach. Nine NLP techniques, including Generative Pre-Trained Transformer 3.5 (GPT-3.5), were used to automatically retrieve Medical Dictionary for Regulatory Activities Preferred Terms (MedDRA PTs) from signs and symptoms extracted from FACTA+. Results: Overall, 17% of disproportionality signals for COVID-19 vaccines were dismissed as they reported signs and symptoms of listed AEFIs. Eight of nine NLP techniques used to automatically retrieve MedDRA PTs from signs and symptoms extracted from FACTA+ showed suboptimal performance. GPT-3.5 achieved an accuracy of 78% in correctly assigning MedDRA PTs. Conclusion: Our approach reduced the need for manual exclusion of disproportionality signals related to listed AEFIs and may lead to better optimization of time and resources in signal management. © 2023, The Author(s).

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Sathi, Vipin N.
    et al.
    Uppsala University, Sweden.
    Rohner, Christian
    Uppsala University, Sweden.
    Voigt, Thiemo
    RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Uppsala University, Sweden.
    A PUF-Based Indirect Authentication and Key Establishment Protocol for Wearable Devices2023Ingår i: IEEE International Conference on Communications (ICC), Institute of Electrical and Electronics Engineers Inc. , 2023, Vol. 2023-May, s. 615-621, artikel-id 193943Konferensbidrag (Refereegranskat)
    Abstract [en]

    Microwave communication through the fat tissue in the human body enables a new channel for wearable devices to communicate with each other. The wearable devices can communicate to the external world through a powerful device in their network called central control unit (CU); for example, a smartphone. Some wearable devices may be out of the range of the CU temporarily due to body movements or permanently due to low signal strength, in a fat channel communication network. Such devices can connect to the CU with the help of their neighbor device in the same network. In this paper, we propose a protocol to ensure secure indirect authentication and key establishment between the out-of-range device and the CU in a fat channel communication network, via an untrusted intermediate device in the network. The proposed protocol is lightweight and resistant to denial-of-sleep attacks on the intermediate device. We analyze the security and the computation overhead of the proposed protocol. 

  • 3.
    Winkel, Jørgen
    et al.
    University of Gothenburg, Sweden; DTU Technical University of Denmark, Denmark.
    Edwards, Kasper
    DTU Technical University of Denmark, Denmark.
    Jarebrant, Caroline
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Birgisdóttir, Birna Dröfn
    Reykjavik University, Iceland.
    Johansson Hanse, Jan
    University of Gothenburg, Sweden.
    Gunnarsdóttir, Sigrún
    University of Iceland, Iceland; Bifröst University, Iceland.
    Harlin, Ulrika
    RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.
    Ulin, Kerstin
    University of Gothenburg, Sweden.
    Effect modifiers in intervention research at hospitals in three Nordic countries2016Ingår i: Abstract book of the 10th NOVO symposium, 2016, s. 33-Konferensbidrag (Övrigt vetenskapligt)
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf