Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Ameli, A. A.
    et al.
    Amvrosiadi, Nino
    Uppsala University, Sweden.
    Grabs, T.
    Laudon, H.
    Creed, I. F.
    McDonnell, J. J.
    Bishop, K.
    Hillslope permeability architecture controls on subsurface transit time distribution and flow paths2016Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 543, s. 17-30Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Defining the catchment transit time distribution remains a challenge. Here, we used a new semi-analytical physically-based integrated subsurface flow and advective–dispersive particle movement model to assess the subsurface controls on subsurface water flow paths and transit time distributions. First, we tested the efficacy of the new model for simulation of the observed groundwater dynamics at the well-studied S-transect hillslope (Västrabäcken sub-catchment, Sweden). This system, like many others, is characterized by exponential decline in saturated hydraulic conductivity and porosity with soil depth. The model performed well relative to a tracer-based estimate of transit time distribution as well as observed groundwater depth–discharge relationship within 30 m of the stream. Second, we used the model to assess the effect of changes in the subsurface permeability architecture on flow pathlines and transit time distribution in a set of virtual experiments. Vertical patterns of saturated hydraulic conductivity and porosity with soil depth significantly influenced hillslope transit time distribution. Increasing infiltration rates significantly decreased mean groundwater age, but not the distribution of transit times relative to mean groundwater age. The location of hillslope hydrologic boundaries, including the groundwater divide and no-flow boundary underlying the hillslope, changed the transit time distribution less markedly. These results can guide future decisions on the degree of complexity that is warranted in a physically-based rainfall–runoff model to efficiently and explicitly estimate time invariant subsurface pathlines and transit time distribution. 

  • 2. Amvrosiadi, Nino
    Seibert, Jan (Medarbetare/bidragsgivare)
    Soil moisture storage estimation based on steady vertical fluxes under equilibrium2017Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 553, s. 798-804Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soil moisture is an important variable for hillslope and catchment hydrology. There are various computational methods to estimate soil moisture and their complexity varies greatly: from one box with vertically constant volumetric soil water content to fully saturated-unsaturated coupled physically-based models. Different complexity levels are applicable depending on the simulation scale, computational time limitations, input data and knowledge about the parameters. The Vertical Equilibrium Model (VEM) is a simple approach to estimate the catchment-wide soil water storage at a daily time-scale on the basis of water table level observations, soil properties and an assumption of hydrological equilibrium without vertical fluxes above the water table. In this study VEM was extended by considering vertical fluxes, which allows conditions with evaporation and infiltration to be represented. The aim was to test the hypothesis that the simulated volumetric soil water content significantly depends on vertical fluxes. The water content difference between the no-flux, equilibrium approach and the new constant-flux approach greatly depended on the soil textural class, ranging between similar to 1% for silty clay and similar to 44% for sand at an evapotranspiration rate of 5 mm.d(-1). The two approaches gave a mean volumetric soil water content difference of 1 mm for two case studies (sandy loam and organic rich soils). The results showed that for many soil types the differences in estimated storage between the no-flux and the constant flux approaches were relatively small.

  • 3.
    Amvrosiadi, Nino
    Uppsala University, Sweden.
    The value of experimental data and modelling for exploration of hydrological functioning: The case of a till hillslope2017Doktorsavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    Successfully modeling one system response (e.g. hydrograph or solute transport) sometimes gives the false sense of well-characterizing the modeled system. This is partly because of the well-known equifinality issue; during the calibration process multiple parameter combinations can produce similarly good results. One step forward towards a better-defined system is using measured (at relevant scale) values for the model parameters, as well as using multiple conditions to constrain the model. But when not enough, or relevant, field measurements are available, virtual experiments (VE’s) can be used as a supplementary method to model calibration. The advantage of VE’s over model calibration is that they can also be used to explore assumptions both on the system hydrological processes, and on the model structure. One goal of this study was to utilize both field measurements and models for better characterization of the S-transect hillslope, located in Västrabäcken catchment, Northern Sweden. This included (a) characteristics in space: system vertical boundaries, hydraulic parameters, pore water velocity distribution, spatial correlation of flowpaths, soil water retention properties; (b) characteristic of system’s dynamic behavior: storage – discharge relationship, transit time distribution, turnover time; and (c) outputs’ sensitivity to external forcing, and to small scale structure assumptions. The second goal was to comment on the value of field measurements and virtual experiments for extracting information about the studied system. An intensely monitored study hillslope was chosen for this work. Although the hillslope has already been the subject of multiple field and modelling studies, there are still open questions regarding the characteristics listed above. The models used were the Vertical Equilibrium Model (VEM), and the Multiple Interacting Pathways (MIPs) model. It was found that the hillslope was well connected; from the near-stream areas up to the water divide the storage – discharge relationship could be described as an exponential function. Also, the dynamic storage (which controls the hydrograph dynamics) was much smaller comparing to the total hillslope storage. The unsaturated soil storage was found to be more sensitive to water table positions than vertical flux magnitude. The dynamic condition of external forcing (precipitation and evapotranspiration) affected the transit time distribution (TTD) shape. And, opposite to expectations, TTD was not sensitive to micro-scale structural assumptions tested here.

  • 4.
    Amvrosiadi, Nino
    et al.
    Uppsala University, Sweden.
    Bishop, K.
    Seibert, J.
    Soil moisture storage estimation based on steady vertical fluxes under equilibrium2017Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 553, s. 798-804Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soil moisture is an important variable for hillslope and catchment hydrology. There are various computational methods to estimate soil moisture and their complexity varies greatly: from one box with vertically constant volumetric soil water content to fully saturated-unsaturated coupled physically-based models. Different complexity levels are applicable depending on the simulation scale, computational time limitations, input data and knowledge about the parameters. The Vertical Equilibrium Model (VEM) is a simple approach to estimate the catchment-wide soil water storage at a daily time-scale on the basis of water table level observations, soil properties and an assumption of hydrological equilibrium without vertical fluxes above the water table. In this study VEM was extended by considering vertical fluxes, which allows conditions with evaporation and infiltration to be represented. The aim was to test the hypothesis that the simulated volumetric soil water content significantly depends on vertical fluxes. The water content difference between the no-flux, equilibrium approach and the new constant-flux approach greatly depended on the soil textural class, ranging between ∼1% for silty clay and ∼44% for sand at an evapotranspiration rate of 5 mm·d−1. The two approaches gave a mean volumetric soil water content difference of ∼1 mm for two case studies (sandy loam and organic rich soils). The results showed that for many soil types the differences in estimated storage between the no-flux and the constant flux approaches were relatively small.

  • 5.
    Amvrosiadi, Nino
    et al.
    Uppsala University, Sweden.
    Seibert, J.
    Grabs, T.
    Bishop, K.
    Water storage dynamics in a till hillslope: the foundation for modeling flows and turnover times2017Ingår i: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 31, nr 1, s. 4-14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies on hydrology, biogeochemistry, or mineral weathering often rely on assumptions about flow paths, water storage dynamics, and transit times. Testing these assumptions requires detailed hydrometric data that are usually unavailable at the catchment scale. Hillslope studies provide an alternative for obtaining a better understanding, but even on such well-defined and delimited scales, it is rare to have a comprehensive set of hydrometric observations from the water divide down to the stream that can constrain efforts to quantify water storage, movement, and turnover time. Here, we quantified water storage with daily resolution in a hillslope during the course of almost an entire year using hydrological measurements at the study site and an extended version of the vertical equilibrium model. We used an exponential function to simulate the relationship between hillslope discharge and water table; this was used to derive transmissivity profiles along the hillslope and map mean pore water velocities in the saturated zone. Based on the transmissivity profiles, the soil layer transmitting 99% of lateral flow to the stream had a depth that ranged from 8.9 m at the water divide to under 1 m closer to the stream. During the study period, the total storage of this layer varied from 1189 to 1485 mm, resulting in a turnover time of 2172 days. From the pore water velocities, we mapped the time it would take a water particle situated at any point of the saturated zone anywhere along the hillslope to exit as runoff. Our calculations point to the strengths as well as limitations of simple hydrometric data for inferring hydrological properties and water travel times in the subsurface. 

  • 6. Campeau, A.
    et al.
    Bishop, K.
    Amvrosiadi, Nino
    Uppsala University, Sweden.
    Billett, M. F.
    Garnett, M. H.
    Laudon, H.
    Öquist, M.G.
    Wallin, M. B.
    Current forest carbon fixation fuels stream CO 2 emissions2019Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 10, nr 1, artikel-id 1876Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Stream CO 2 emissions contribute significantly to atmospheric climate forcing. While there are strong indications that groundwater inputs sustain these emissions, the specific biogeochemical pathways and timescales involved in this lateral CO 2 export are still obscure. Here, via an extensive radiocarbon ( 14 C) characterisation of CO 2 and DOC in stream water and its groundwater sources in an old-growth boreal forest, we demonstrate that the 14 C-CO 2 is consistently in tune with the current atmospheric 14 C-CO 2 level and shows little association with the 14 C-DOC in the same waters. Our findings thus indicate that stream CO 2 emissions act as a shortcut that returns CO 2 recently fixed by the forest vegetation to the atmosphere. Our results expose a positive feedback mechanism within the C budget of forested catchments, where stream CO 2 emissions will be highly sensitive to changes in forest C allocation patterns associated with climate and land-use changes. © 2019, The Author(s).

  • 7.
    Hornborg, Sara
    et al.
    RISE Research Institutes of Sweden, Bioekonomi och hälsa, Jordbruk och livsmedel.
    Törnqvist, Oscar
    SGU Geological Survey of Sweden, Sweden.
    Novaglio, Camilla
    University of Tasmania, Australia; Centre for Marine Socioecology, Australia.
    Selgrath, Jennifer
    NOAA National Oceanic and Atmospheric Administration, USA.
    Kågesten, Gustav
    SGU Geological Survey of Sweden, Sweden.
    Loo, Lars-Ove
    University of Gothenburg, Sweden.
    Thurstan, Ruth
    University of Exeter, UK.
    On potential use of historical perspectives in Swedish marine management2021Rapport (Övrigt vetenskapligt)
    Abstract [en]

    Coastal seas have gone through dramatic transformations over the past millennia. Many changes have been driven by human activities. Current coastal monitoring and reference conditions used in policy are however in the scale of decades. This short perspective affects restoration goals and current understanding of the full potential of more sustainable use. This report summarizes the outcome of a pilot study on if, and how, longer historical perspectives of the seas may be of use in a Swedish coastal management context. Through contacts with experts in a range of scientific disciplines, literature searches and workshops, the report aims at providing a point of departure for further in-depth investigations. The report is not a comprehensive review, but rather provides examples of records available, research performed and suggests potential research themes for the future. It is found that there are ample opportunities to use a wide range of historical records from Swedish coasts for various management applications. There are also coastal policy applications that already are informed by historical perspectives, both international and Swedish, that may merit from further investigations. Based on the general interest by marine management practitioners in what historical applications may bring to contemporary management, international collaboration may provide leverage for action through exchange of experiences and comparisons of historical records.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Lindqvist, Andreas
    et al.
    RISE Research Institutes of Sweden. SLU Swedish University of Agricultural Sciences, Sweden.
    Fornell, Rickard
    RISE Research Institutes of Sweden, Samhällsbyggnad, Energi och resurser.
    Prade, Thomas
    SLU Swedish University of Agricultural Sciences, Sweden.
    Tufvesson, Linda
    SLU Swedish University of Agricultural Sciences, Sweden.
    Khalil, Sammar
    SLU Swedish University of Agricultural Sciences, Sweden.
    Kopainsky, Birgit
    University of Bergen, Sweden.
    Human-Water Dynamics and their Role for Seasonal Water Scarcity – a Case Study2021Ingår i: Water resources management, ISSN 0920-4741, E-ISSN 1573-1650, Vol. 35, nr 10, s. 3043-3061Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ensuring sustainable management and an adequate supply of freshwater resources is a growing challenge around the world. Even in historically water abundant regions climate change together with population growth and economic development are processes that are expected to contribute to an increase in permanent and seasonal water scarcity in the coming decades. Previous studies have shown how policies to address water scarcity often fail to deliver lasting improvements because they do not account for how these processes influence, and are influenced by, human-water interactions shaping water supply and demand. Despite significant progress in recent years, place-specific understanding of the mechanisms behind human-water feedbacks remain limited, particularly in historically water abundant regions. To this end, we here present a Swedish case study where we, by use of a qualitative system dynamics approach, explore how human-water interactions have contributed to seasonal water scarcity at the local-to-regional scale. Our results suggest that the current approach to address water scarcity by inter-basin water transports contributes to increasing demand by creating a gap between the perceived and actual state of water resources among consumers. This has resulted in escalating water use and put the region in a state of systemic lock-in where demand-regulating policies are mitigated by increases in water use enabled by water transports. We discuss a combination of information and economic policy instruments to combat water scarcity, and we propose the use of quantitative simulation methods to further assess these strategies in future studies. © 2021, The Author(s).

  • 9.
    Nicolaidis Lindqvist, Andreas
    et al.
    RISE Research Institutes of Sweden, Samhällsbyggnad, Energi och resurser.
    Fornell, Rickard
    RISE Research Institutes of Sweden, Samhällsbyggnad, Energi och resurser.
    On the combined effects of socio-hydrology and climate change on water resources management – a case study2021Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 10. Scaini, A.
    et al.
    Amvrosiadi, Nino
    Uppsala University, Sweden.
    Hissler, C.
    Pfister, L.
    Beven, K.
    Following tracer through the unsaturated zone using a multiple interacting pathways model: Implications from laboratory experiments2019Ingår i: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 33, nr 17, s. 2300-2313Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Models must effectively represent velocities and celerities if they are to address the old water paradox. Celerity information is recorded indirectly in hydrograph observations, whereas velocity information is more difficult to measure and simulate effectively, requiring additional assumptions and parameters. Velocity information can be obtained from tracer experiments, but we often lack information on the influence of soil properties on tracer mobility. This study features a combined experimental and modelling approach geared towards the evaluation of different structures in the multiple interacting pathways (MIPs) model and validates the representation of velocities with laboratory tracer experiments using an undisturbed soil column. Results indicate that the soil microstructure was modified during the experiment. Soil water velocities were represented using MIPs, testing how the (a) shape of the velocity distribution, (b) transition probability matrices (TPMs), (c) presence of immobile storage, and (d) nonstationary field capacity influence the model's performance. In MIPs, the TPM controls exhanges of water between pathways. In our experiment, MIPs were able to provide a good representation of the pattern of outflow. The results show that the connectedness of the faster pathways is important for controlling the percolation of water and tracer through the soil. The best model performance was obtained with the inclusion of immobile storage, but simulations were poor under the assumption of stationary parameters. The entire experiment was adequately simulated once a time-variable field capacity parameter was introduced, supporting the need for including the effects of soil microstructure changes observed during the experiment. © 2019 The Authors 

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf