Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andersson Trojer, Markus
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF. Max Planck Institute of Colloids and Interfaces, Germany.
    Ananievskaia, Anna
    University of Gothenburg, Sweden.
    Gabul-Zada, Asvad A.
    University of Gothenburg, Sweden.
    Nordstierna, Lars
    Chalmers University of Technology, Sweden.
    Blanck, Hans
    University of Gothenburg, Sweden.
    Polymer Core-Polymer Shell Particle Formation Enabled by Ultralow Interfacial Tension Via Internal Phase Separation: Morphology Prediction Using the Van Oss Formalism2018Inngår i: Colloid and Interface Science Communications, ISSN 2215-0382, Vol. 25, s. 36-40Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The internal phase separation technique is a versatile method for liquid core-polymer shell formation, yet limited to very hydrophobic core materials and actives. The use of polymeric cores instead circumvents this restriction due to the absent mixing entropy for binary polymer mixtures which allows the polymeric core (and the active) to approach the polarity of the shell. Polystyrene core-shell and janus particles were formulated using polymethylmethacrylate, poly(lactic acid), poly(lactic acid-co-glycolic acid), poly(ε-caprolactone) or cellulose triacetate as shell-forming polymers. The morphology and the partitioning was experimentally determined by selectively staining the core and the shell with β-carotene and methylene blue respectively. In addition, the van Oss formalism was introduced to theoretically predict the thermodynamic equilibrium morphology. As elucidated using the theoretical predictions as well as experimental optical tensiometry, it was found that the driving force for core-shell morphology is, in contrast to liquid core-polymer shell particles, a low core-shell interfacial tension.

  • 2.
    Andersson Trojer, Markus
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF. Max Planck Institute of Colloids and Interfaces, Germany.
    Andersson, Mats
    Chalmers University of Technology, Sweden; Flinders University, Australia.
    Bergenholtz, Johan
    University of Gothenburg, Sweden.
    Gatenholm, Paul
    Chalmers University of Technology, Sweden.
    Quantitative Grafting for Structure-Function Establishment: Thermoresponsive Poly(alkylene oxide) Graft Copolymers Based on Hyaluronic Acid and Carboxymethylcellulose2019Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 3, s. 1271-1280Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A series of thermoresponsive graft copolymers, gelling at physiological conditions in aqueous solution and cell growth media, have been synthesized using quantitative coupling between a small set of amino-functionalized poly(alkylene oxide) copolymers (PAO) and the carboxylate of the biologically important polysaccharides (PSa) carboxymethylcellulose and the less reactive hyaluronate. Quantitative grafting enables the establishment of structure-function relationship which is imperative for controlling the properties of in situ gelling hydrogels. The EDC/NHS-mediated reaction was monitored using SEC-MALLS, which revealed that all PAOs were grafted onto the PSa backbone. Aqueous solutions of the graft copolymers were Newtonian fluids at room temperatures and formed reversible physical gels at elevated temperatures which were noncytotoxic toward chondrocytes. The established structure-function relationship was most clearly demonstrated by inspecting the thermogelling strength and the onset of thermogelling in a phase diagram. The onset of the thermogelling function could be controlled by the global PAO concentration, independent of graft ratio.

  • 3.
    Andersson Trojer, Markus
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF. Max Planck Institute of Colloids and Interfaces, Germany.
    Gabul-Zada, Asvad
    University of Gothenburg, Sweden.
    Ananievskaia, Anna
    University of Gothenburg, Sweden.
    Nordstierna, Lars
    Chalmers University of Technology, Sweden.
    Östman, Marcus
    Umeå University, Sweden.
    Blanck, Hans
    University of Gothenburg, Sweden.
    Use of anchoring amphiphilic diblock copolymers for encapsulation of hydrophilic actives in polymeric microcapsules: methodology and encapsulation efficiency2019Inngår i: Colloid and Polymer Science, ISSN 0303-402X, E-ISSN 1435-1536, Vol. 297, nr 2, s. 307-313Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Aqueous core-shell particles based on polystyrene, poly(methyl methacrylate) or polycaprolactone have been formulated using a facile double emulsion-based solvent evaporation method. The size distribution is narrow, and the morphology control is remarkable given the simple characteristics of the encapsulation method. The inner droplets are stabilized by oil-soluble poly(ethylene oxide)-based block copolymers which are anchored in the polymeric shell by using hydrophobic blocks of the same type as that of the shell-forming polymer. This facilitates the efficient encapsulation of dyes and hydrophilic biocides. [Figure not available: see fulltext.].

  • 4.
    Andersson Trojer, Markus
    et al.
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Olsson, Carina
    RISE - Research Institutes of Sweden, Material och produktion, IVF.
    Bengtsson, Jenny
    Chalmers University of Technology, Sweden.
    Hedlund, Arthur
    Chalmers University of Technology, Sweden.
    Bordes, Romain
    Chalmers University of Technology, Sweden.
    Directed self-assembly of silica nanoparticles in ionic liquid-spun cellulose fibers.2019Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 553, s. 167-176, artikkel-id S0021-9797(19)30648-4Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The application range of man-made cellulosic fibers is limited by the absence of cost- and manufacturing-efficient strategies for anisotropic hierarchical functionalization. Overcoming these bottlenecks is therefore pivotal in the pursuit of a future bio-based economy. Here, we demonstrate that colloidal silica nanoparticles (NPs), which are cheap, biocompatible and easy to chemically modify, enable the control of the cross-sectional morphology and surface topography of ionic liquid-spun cellulose fibers. These properties are tailored by the silica NPs' surface chemistry and their entry point during the wet-spinning process (dope solution DSiO2 or coagulation bath CSiO2). For CSiO2-modified fibers, the coagulation mitigator dimethylsulphoxide allows for controlling the surface topography and the amalgamation of the silica NPs into the fiber matrix. For dope-modified fibers, we hypothesize that cellulose chains act as seeds for directed silica NP self-assembly. This results for DSiO2 in discrete micron-sized rods, homogeneously distributed throughout the fiber and for glycidoxy-surface modified DSiO2@GLYEO in nano-sized surface aggregates and a cross-sectional core-shell fiber morphology. Furthermore, the dope-modified fibers display outstanding strength and toughness, which are both characteristic features of biological biocomposites.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7