Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aghaeinezhadfirouzja, Saeid
    et al.
    Shanghai Jiao Tong University, China.
    Liu, Hui
    Shanghai Jiao Tong University, China.
    Balador, Ali
    RISE - Research Institutes of Sweden, ICT, SICS. Mälardalen University, Sweden.
    Practical 3-D beam pattern based channel modeling for multi-polarized massive MIMO systems2018Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, nr 4, artikkel-id 1186Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  • 2.
    Alirezaie, Marjan
    et al.
    Örebro University, Sweden.
    Renoux, Jennifer
    Örebro University, Sweden.
    Köckemann, Uwe
    Örebro University, Sweden.
    Kristoffersson, Annica
    Örebro University, Sweden.
    Karlsson, Lars
    Örebro University, Sweden.
    Blomqvist, Eva
    RISE - Research Institutes of Sweden, ICT, SICS.
    Tsiftes, Nicolas
    RISE - Research Institutes of Sweden, ICT, SICS.
    Voigt, Thiemo
    RISE - Research Institutes of Sweden, ICT, SICS.
    Loutfi, A
    Örebro University, Sweden.
    An ontology-based context-aware system for smart homes: E-care@home2017Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, nr 7, artikkel-id 1586Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home.

  • 3.
    Araujo, Jefferson
    et al.
    Pontifical Catholic University of Rio de Janeiro, Brazil.
    Reis, Andre
    Observatório Nacional, Brazil.
    Oliveira, Vanderlei
    Observatório Nacional, Brazil.
    Santos, Amanda
    University of California, US.
    Luz-Lima, Cleaneo
    Universidade Federal do Piauí, Brazil.
    Yokoyama, Elder
    University of Brasília, Brazil.
    Mendoza, Leonardo
    Universidade Estadual do Rio de Janeiro, Brazil.
    Pereira, Joao
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Bruno, Antonio
    Pontifical Catholic University of Rio de Janeiro, Brazil.
    Characterizing complex mineral structures in thin sections of geological samples with a scanning hall effect microscope2019Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 7, artikkel-id 1636Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We improved a magnetic scanning microscope for measuring the magnetic properties of minerals in thin sections of geological samples at submillimeter scales. The microscope is comprised of a 200 µm diameter Hall sensor that is located at a distance of 142 µm from the sample; an electromagnet capable of applying up to 500 mT DC magnetic fields to the sample over a 40 mm diameter region; a second Hall sensor arranged in a gradiometric configuration to cancel the background signal applied by the electromagnet and reduce the overall noise in the system; a custom-designed electronics system to bias the sensors and allow adjustments to the background signal cancelation; and a scanning XY stage with micrometer resolution. Our system achieves a spatial resolution of 200 µm with a noise at 6.0 Hz of 300 nT rms /(Hz) 1/2 in an unshielded environment. The magnetic moment sensitivity is 1.3 × 10 −11 Am 2 . We successfully measured the representative magnetization of a geological sample using an alternative model that takes the sample geometry into account and identified different micrometric characteristics in the sample slice.

  • 4.
    Balador, Ali
    et al.
    RISE - Research Institutes of Sweden, ICT, SICS. Mälardalen University, Sweden.
    Kouba, Anis
    Polytechnic Institute of Porto, Portugal.
    Cassioli, Dajana
    University of L’Aquila, Italy.
    Foukalas, Fotis T.
    DTU Technical University of Denmark, Denmark.
    Severino, Ricardo
    Polytechnic Institute of Porto, Portugal.
    Stepanova, Daria
    Finnish Meteorological Institute, Finland.
    Agosta, Giovanni
    Politecnico di Milano, Italy.
    Xie, Jing
    DNV GL, Norway.
    Pomante, Luigi
    DTU Technical University of Denmark, Denmark.
    Mongelli, Maurizio
    CNR-IEIIT, Italy.
    Pierini, Pierluigi
    Intecs S.p.A, Italy.
    Petersen, Stig
    SINTEF, Norway.
    Sukuvaara, Timo
    Finnish Meteorological Institute, Finland.
    Wireless communication technologies for safe cooperative cyber physical systems2018Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, nr 11, artikkel-id 4075Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use cases.

  • 5.
    Balador, Ali
    et al.
    RISE - Research Institutes of Sweden, ICT, SICS. Mälardalen University, Sweden.
    Uhlemann, Elisabeth
    Mälardalen University, Sweden.
    Calafate, Carlos T
    Universitat Politècnica de València, Spain.
    Cano, Juan-Carlos
    Universitat Politècnica de València, Spain.
    Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies2018Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, nr 4, artikkel-id E955Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Timely and reliable inter-vehicle communications is a critical requirement to support traffic safety applications, such as vehicle platooning. Furthermore, low-delay communications allow the platoon to react quickly to unexpected events. In this scope, having a predictable and highly effective medium access control (MAC) method is of utmost importance. However, the currently available IEEE 802.11p technology is unable to adequately address these challenges. In this paper, we propose a MAC method especially adapted to platoons, able to transmit beacons within the required time constraints, but with a higher reliability level than IEEE 802.11p, while concurrently enabling efficient dissemination of event-driven messages. The protocol circulates the token within the platoon not in a round-robin fashion, but based on beacon data age, i.e., the time that has passed since the previous collection of status information, thereby automatically offering repeated beacon transmission opportunities for increased reliability. In addition, we propose three different methods for supporting event-driven messages co-existing with beacons. Analysis and simulation results in single and multi-hop scenarios showed that, by providing non-competitive channel access and frequent retransmission opportunities, our protocol can offer beacon delivery within one beacon generation interval while fulfilling the requirements on low-delay dissemination of event-driven messages for traffic safety applications.

  • 6.
    Hakonen, Aron
    et al.
    RISE - Research Institutes of Sweden, Biovetenskap och material, Kemi och material. Chalmers University of Technology, Sweden.
    Wang, FengShao
    University of Science and Technology of China, China.
    Andersson, Per Ola
    FOI Swedish Defense Research Agency, Sweden; Uppsala University, Sweden.
    Wingfors, Håkan
    FOI Swedish Defense Research Agency, Sweden.
    Rindzevicius, Tomas
    DTU Technical University of Denmark, Denmark.
    Stenbæk Schmidt, Michael
    DTU Technical University of Denmark, Denmark.
    Rao Soma, Venugopal
    University of Hyderabad, India.
    Xu, Shicai
    Dezhou University, China.
    Li, YingQi
    University of Science and Technology of China, China.
    Boisen, Anja
    DTU Technical University of Denmark, Denmark.
    Wu, HengAn
    University of Science and Technology of China, China.
    Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity2017Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 2, nr 2, s. 1998-202Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using surface-enhanced Raman scattering (SERS) silver nanopillar substrates and hand-held Raman spectroscopy equipment. The advancing elasto-capillarity effects are explained by molecular dynamics simulations. We obtain a SERS PA detection limit on the order of 20 ppt, corresponding attomole amounts, which together with the simple analysis methodology demonstrates that the presented approach is highly competitive for ultrasensitive analysis in the field.

  • 7.
    Karlsson, Mikael
    et al.
    RISE - Research Institutes of Sweden, ICT, Acreo. Pamitus AB, Sweden.
    Strandqvist, Carl
    Swedish National Forensic Centre, Sweden.
    Jussi, Johnny
    RISE - Research Institutes of Sweden, ICT, Acreo. KTH Royal Institute of Technology, Sweden.
    Öberg, Olof
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Petermann, Ingemar
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Elmlund, Louise
    Swedish National Forensic Centre, Sweden.
    Dunne, Simon
    Swedish National Forensic Centre, Sweden.
    Fu, Ying
    KTH Royal Institute of Technology, Sweden.
    Wang, Qin
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Chemical Sensors Generated on Wafer-Scale Epitaxial Graphene for Application to Front-Line Drug Detection2019Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 10, artikkel-id 2214Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Generation of large areas of graphene possessing high quality and uniformity will be a critical factor if graphene-based devices/sensors are to be commercialized. In this work, epitaxial graphene on a 2" SiC wafer was used to fabricate sensors for the detection of illicit drugs (amphetamine or cocaine). The main target application is on-site forensic detection where there is a high demand for reliable and cost-efficient tools. The sensors were designed and processed with specially configured metal electrodes on the graphene surface by utilizing a series of anchors where the metal contacts are directly connected on the SiC substrate. This has been shown to improve adhesion of the electrodes and decrease the contact resistance. A microfluidic system was constructed to pump solutions over the defined graphene surface that could then act as a sensor area and react with the target drugs. Several prototypic systems were tested where non-covalent interactions were used to localize the sensing components (antibodies) within the measurement cell. The serendipitous discovery of a wavelength-dependent photoactivity for amphetamine and a range of its chemical analogs, however, limited the general application of these prototypic systems. The experimental results reveal that the drug molecules interact with the graphene in a molecule dependent manner based upon a balance of π -stacking interaction of the phenyl ring with graphene (p-doping) and the donation of the amine nitrogens lone pair electrons into the π - π *-system of graphene (n-doping).

  • 8.
    Seoane, Fernando
    et al.
    University of Borås, Sweden; Karolinska University hospital, Sweden; Karolinska Institutet, Sweden.
    Soroudi, Azadeh
    University of Borås, Sweden.
    Lu, Ke
    Chalmers University of Technology, Sweden.
    Nilsson, David
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Nilsson, Marie
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Abtahi, Farhad
    KTH Royal Institute of Technology, Sweden; Karolinska Institutet, Sweden.
    Skrifvars, Mikael
    University of Borås, Sweden.
    Textile-Friendly Interconnection between Wearable Measurement Instrumentation and Sensorized Garments-Initial Performance Evaluation for Electrocardiogram Recordings.2019Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 20, artikkel-id E4426Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interconnection between hard electronics and soft textiles remains a noteworthy challenge in regard to the mass production of textile-electronic integrated products such as sensorized garments. The current solutions for this challenge usually have problems with size, flexibility, cost, or complexity of assembly. In this paper, we present a solution with a stretchable and conductive carbon nanotube (CNT)-based paste for screen printing on a textile substrate to produce interconnectors between electronic instrumentation and a sensorized garment. The prototype connectors were evaluated via electrocardiogram (ECG) recordings using a sensorized textile with integrated textile electrodes. The ECG recordings obtained using the connectors were evaluated for signal quality and heart rate detection performance in comparison to ECG recordings obtained with standard pre-gelled Ag/AgCl electrodes and direct cable connection to the ECG amplifier. The results suggest that the ECG recordings obtained with the CNT paste connector are of equivalent quality to those recorded using a silver paste connector or a direct cable and are suitable for the purpose of heart rate detection.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8