Electric cargo (e-cargo) bikes have superior carrying capacity compared to conventional bicycles. Consequently, both scholars and policymakers have proposed that e-cargo bikes might be the answer to realizing car-free living. This study aims to identify their potential to replace car-use from the user’s, the manufacturer’s and the city’s perspective. Two versions of an e-cargo bike concept, equipped with weather protection, were field tested across four professional organizations in Gothenburg, Sweden. In short, the data show that the demonstrated e-cargo bikes can replace certain car travel. Still, this modal shift seems contingent to strong organizational and managerial support.
SEEL Swedish Electric Transport Laboratory is being established as a new independent test centre for research and development in the field of electromobility including batteries. The aim is to enhance knowledge development and to improve collaboration between enterprises and researchers. Electrification of the transport sector is to be speeded up at SEEL’s facilities in Borås, Gothenburg and Nykvarn in Sweden. SEEL works together with companies from Belgium, Finland, France, Germany, Italy and Poland in an important project of common European interest for batteries, IPCEI Batteries.
The most important location for charging of electric vehicles is nearby the household. Access to a charging point is in general possible for people who own their car park, but could be more complicated for residents in multifamily dwellings. A case study was conducted with the aim to develop a common strategy for charging of electric vehicles in the proximity of multifamily dwellings in the city of Gothenburg. The suggested policies align with the city's local aims and do not hinder future densification or high utilization of parking areas.
Expanding cities need to cope with significant challenges to provide good mobility, while atthe same time minimizing congestion, emissions and noise. Compared to combustion vehicles,electric vehicles have higher energy efficiency, reduced local emissions and are quiet, and cantherefore ease the above challenges. Unfortunately, the energy density in batteries is relativelylow; therefore they would be both expensive and heavy to achieve a corresponding range ofconventional vehicles. This case study has therefore examined the possibilities, ambiguitiesand requirements for utilizing Gothenburg’s existing tram network as energy source foren-route charging of buses. A conceptual technical solution has furthermore been presented toenable the connection to the tram network. It is also recommended to implement smart controlof the vehicle’s energy consumption in order to optimize the network power utilizationwithout additional infrastructure investments.
Inductive charging could give electric vehicles yet another competitive advantage over fossil-drivenvehicles in that users seldom or never have to think about refueling. However, when about to recharge thevehicle, the secondary, receiver coil must be precisely positioned above the primary, transmitter coil inorder to achieve high transmitted power and efficiency. Manually maneuvering a vehicle to this positionhas in our studies proven to be a challenging task, especially when using tight or public parking spaces.This article investigates the parking precision challenges connected with induction charging along withpossible solutions, including fully automated parking.
Wireless, inductive, charging could give electric cars yet another, and perhapsfinal, advantage compared with fossil driven cars: that you in principle never haveto drive somewhere to re-fuel. Instead the cars are being charged wheneverparked.The technology itself is not complicated but the application for vehicles in realuse is still in an early phase. Therefore, there is a need to understand both thepractical and technical difficulties how real drivers use and perceive the newtechnology. Therefore, the WiCh-project was initiated after the completion of aprevious feasibility study that unconditionally studied appropriate solutions forconvenient charging.The project has, in what today still is the world’s largest single field trial ofinduction charging, equipped 20 passenger cars in municipality and private useand then studied the usage during a period of one and a half years. The resultsshow that wireless charging can be attractive compared to cable charging and thatthe charging behaviour most likely will change with wireless charging. Thecharging equipment was acquired from the only supplier available on the openmarket, Evatran Group from the U.S.A. To get approval for a field trial in Swedenseveral technical tests were undertaken, which also built important knowledge fortesting organisations and authorities.