Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergman, Kristina
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Henriksson, Patrik
    Royal Swedish Academy of Sciences, Sweden; Stockholm University, Sweden; Worldfish, Malaysia.
    Hornborg, Sara
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Troell, Max
    Royal Swedish Academy of Sciences, Sweden; Stockholm University, Sweden.
    Borthwick, Louisa
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Jonell, Malin
    Royal Swedish Academy of Sciences, Sweden; Stockholm University, Sweden.
    Philis, Gaspard
    NTNU, Norway.
    Ziegler, Friederike
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Recirculating Aquaculture Is Possible without Major Energy Tradeoff: Life Cycle Assessment of Warmwater Fish Farming in Sweden2020In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 54, no 24, p. 16062-16070Article in journal (Refereed)
    Abstract [en]

    Seafood is seen as promising for more sustainable diets. The increasing production in land-based closed Recirculating Aquaculture Systems (RASs) has overcome many local environmental challenges with traditional open net-pen systems such as eutrophication. The energy needed to maintain suitable water quality, with associated emissions, has however been seen as challenging from a global perspective. This study uses Life Cycle Assessment (LCA) to investigate the environmental performance and improvement potentials of a commercial RAS farm of tilapia and Clarias in Sweden. The environmental impact categories and indicators considered were freshwater eutrophication, climate change, energy demand, land use, and dependency on animal-source feed inputs per kg of fillet. We found that feed production contributed most to all environmental impacts (between 67 and 98%) except for energy demand for tilapia, contradicting previous findings that farm-level energy use is a driver of environmental pressures. The main improvement potentials include improved by-product utilization and use of a larger proportion of plant-based feed ingredients. Together with further smaller improvement potential identified, this suggests that RASs may play a more important role in a future, environmentally sustainable food system.

  • 2.
    Bergman, Kristina
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food. KTH Royal Institute of Technology, Sweden.
    Woodhouse, Anna
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Langeland, Markus
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food. SLU Swedish University of Agricultural Sciences, Sweden.
    Vidakovic, Aleksandar
    SLU Swedish University of Agricultural Sciences, Sweden.
    Alriksson, Björn
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Hornborg, Sara
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Environmental and biodiversity performance of a novel single cell protein for rainbow trout feed2024In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 907, article id 168018Article in journal (Refereed)
    Abstract [en]

    Seafood has an important role to play to achieve a sustainable food system that provides healthy food to a growing world population. Future seafood production will be increasingly reliant on aquaculture where feed innovation is essential to reduce environmental impacts and minimize feed and food competition. This study aimed to investigate whether a novel single cell protein feed ingredient based on Paecilomyces variotii grown on a side stream from the forest industry could improve environmental sustainability of farmed rainbow trout (Oncorhynchus mykiss) by replacing the soy protein concentrate used today. A Life Cycle Assessment including commonly addressed impacts but also the rarely assessed biodiversity impacts was performed. Furthermore, feeding trials were included for potential effects on fish growth, i.e., an assessment of the environmental impacts for the functional unit ‘kg feed required to produce 1 kg live-weight rainbow trout’. Results showed that the best experimental diet containing P. variotii performed 16–73 % better than the control diet containing soy protein concentrate in all impact categories except for energy demand (21 % higher impact). The largest environmental benefits from replacing soy protein with P. variotii in rainbow trout diets was a 73 % reduction of impact on biodiversity and halved greenhouse gas emissions. The findings have high relevance for the aquaculture industry as the production scale and feed composition was comparable to commercial operations and because the effect on fish growth from inclusion of the novel ingredient in a complete diet was evaluated. The results on biodiversity loss from land use change and exploitation through fishing suggest that fishery can dominate impacts and exclusion thereof can greatly underestimate biodiversity impact. Finally, a novel feed ingredient grown on side streams from the forest industry has potential to add to food security through decreasing the dependence on increasingly scarce agricultural land resources. 

  • 3.
    Bergman, Kristina
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Ziegler, Friederike
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Environmental impacts of alternative antifouling methods and use patterns of leisure boat owners2019In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 24, no 4, p. 725-734Article in journal (Refereed)
    Abstract [en]

    Purpose: Leisure boaters in the Baltic Sea apply more copper as antifoulant than needed and permitted. Initiatives have been started to identify efficient means making boat owners comply with regulations through changed consumer behavior. We compare the environmental impacts of conventional and alternative antifouling methods, using Life Cycle Assessment methodology. Methods: Two non-toxic methods were compared with biocide paint. To study the influence of boat owner use patterns, paint and brush washer scenarios (e.g., different paints, amounts, and maintenance) were created based on current use and recommendations. The functional unit was an average Swedish leisure boat kept fouling free for 1 year and impact categories studied were freshwater eco-toxicity and greenhouse gas emissions. Production of paints, fuel, electricity, and material used in the non-toxic methods was included. Sensitivity analysis was performed regarding the characterization method for toxicity, the fuel consumption data, and the copper release data. Results and discussion: The non-toxic methods, hull cover and brush washer, performed best, but a trade-off was identified when the brush washer was located further away from the home port, when additional transportation increased greenhouse gas emissions. The resources needed for the non-toxic methods (production of materials and electricity used) cause considerably lower toxic emissions than paint. In the paint scenarios, using less paint and cleaning the boat over a washing pad with water treatment reduces aquatic emissions significantly. Fuel-related emissions were consistently lower than paint-related emissions. In the best-performing paint scenario, fuel- and paint-related emissions represented 26 and 67% of total emissions, respectively. Conclusions: The non-toxic methods hull cover and brush washers lead to lower emissions, especially when brush washers were located close to the home port. Lacking such infrastructure, “painting less” is a way to reduce emissions, by using lower amounts of paint and painting less frequently. More widespread use of these antifouling strategies would considerably reduce copper emissions from leisure boating to the Baltic Sea. We suggest that support to marinas for investments in brush washers and washing pads should be further developed to enable boat owners to choose more sustainable antifouling methods and that information campaigns on the combined economic, health, and ecosystem impacts of antifouling are especially designed for boaters, marinas, market actors, and policy makers for a change to take place towards more sustainable practices.

  • 4.
    Borthwick, Louisa
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Bergman, Kristina
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Ziegler, Friederike
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Svensk konsumtion av sjömat2019Report (Other academic)
    Abstract [sv]

    Den här rapporten visar att det är möjligt att få fram tillförlitlig statistik över svensk sjömatskonsumtion för alla arter utom sill och skarpsill på en detaljgrad som tidigare saknats, trots de dataluckor som finns.Sjömatskonsumtionen i Sverige beräknas ligga på 25 kg per capita hel sjömat, vilket motsvarar 12,5 kg ätlig sjömat eller knappt två portioner i veckan. Vi äter mindre sjömat än för fem år sedan.Upp mot 80 olika sjömatsarter finns på den svenska marknaden, men de tio vanligaste står för 80 procent av konsumtionen. Mest äter svenskar av lax, sill, torsk och räkor.Knappt 30 procent av det som äts kommer från den inhemska produktionen av sjömat från yrkes- och fritidsfiske, samt odling. Den inhemska produktionen kan ses som Sveriges teoretiska självförsörjningsgrad av sjömat. Drygt 70 procent importeras alltså och då främst med Norge, Danmark och Kina som avsändarland. Från den svenska produktionen är det främst sill, skarpsill, regnbåge och den fisk som rapporteras under koden ”Fryst fisk i.a.n.” i tulltaxan, som exporteras. Figuren nedan visar fördelningen mellan import och inhemsk produktion.Siffran på sillkonsumtion är mycket osäker på grund av att den officiella statistiken håller låg kvalitet. Sill är den volymmässigt och ekonomiskt viktigaste arten i svenskt fiske och den är viktig för svensk konsumtion. Det är därmed anmärkningsvärt att data kring fisket och handeln är så bristfällig.Det är genomförbart att ta fram statistiken på årlig basis för att följa trenden för sjömatskonsumtion över tid, både totalt och utvecklingen av enskilda arter. Metoden som utvecklats här förenklar detta avsevärt, men det krävs fortfarande en del manuell justering och bearbetning av befintliga dataset, samt kunskap om branschen.

    Download full text (pdf)
    fulltext
  • 5.
    Ekman Nilsson, Anna
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Bergman, Kristina
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Gomez Barrio, Laura
    Teagasc Ashtown Food Research Centre, Ireland; Technological University Dublin, Ireland.
    Cabral, Eduarda
    Teagasc Ashtown Food Research Centre, Ireland; .
    Tiwari, Brijesh
    Teagasc Ashtown Food Research Centre, Ireland; .
    Life cycle assessment of a seaweed-based biorefinery concept for production of food, materials, and energy2022In: Algal Research, ISSN 2211-9264, Vol. 65, article id 102725Article in journal (Refereed)
    Abstract [en]

    Blue Economy is seen as an essential contributor to a sustainable development, and it is an important part of the EU Green Deal. Seaweed plays a key role in the Blue Economy as a source of food, feed, and feedstock for biorefineries. Today, the largest part of global seaweed production is based in Asia, but there is also a growing interest in seaweed production in Europe. However, more knowledge on the environmental impacts is needed to ensure sustainable growth of the sector. Seaweed can be used in biorefineries to produce a variety of products for food and non-food applications. The aim of this paper was to perform a life cycle assessment (LCA) of a seaweed value-chain, including seaweed cultivation and production into sodium alginate, biodegradable materials, biogas, and fertilizer in a biorefinery setting. The LCA included 19 environmental impact categories but focused on climate change. The seaweed Saccharina latissima was cultivated and processed in Ireland. Sodium alginate was then extracted by means of ultrasound-assisted extraction, a novel extraction technology. Cellulosic residues produced after the extraction were used for the production of films used as a packaging material. Residues that remain after the production of the films were sent to anaerobic digestion to achieve a no-waste concept. For seaweed cultivation, fuel use and drying of seaweed biomass were the main environmental hot spots; and for the alginate extraction process, the yield and purification after extraction were the main hot spots. Overall, the results of this paper showed that the seaweed-based biorefinery has the potential to be sustainable, but several improvements are necessary before it is competitive with land-based systems. © 2022 The Authors

  • 6.
    Gephart, Jessica
    et al.
    American University, USA.
    Henriksson, Patrik
    Stockholm Resilience Centre, Sweden; WorldFish, Malaysia; Royal Swedish Academy of Sciences, Sweden.
    Parker, Robert
    Dalhousie University, Canada; Aquaculture Stewardship Council, Netherlands.
    Shepon, Alon
    Tel Aviv University, Israel; Harvard T. H. Chan School of Public Health, USA.
    Gorospe, Kelvin
    American University, USA.
    Bergman, Kristina
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Eshel, Gidon
    Bard College, USA.
    Golden, Christopher
    Harvard T. H. Chan School of Public Health, USA.
    Halpern, Benjamin
    University of California, USA.
    Hornborg, Sara
    Jonell, Malin
    Stockholm Resilience Centre, Sweden; Royal Swedish Academy of Sciences, Sweden; .
    Metian, Marc
    International Atomic Energy Agency–Environment Laboratories, Monaco.
    Mifflin, Kathleen
    Dalhousie University, Canada.
    Newton, Richard
    University of Stirling, UK.
    Tyedmers, Peter
    Dalhousie University, Canada.
    Zhang, Wenbo
    Shanghai Ocean University, China.
    Ziegler, Friederike
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Troell, Max
    Stockholm Resilience Centre, Sweden; Royal Swedish Academy of Sciences, Sweden.
    Environmental performance of blue foods2021In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 597, no 7876, p. 360-365Article in journal (Refereed)
    Abstract [en]

    Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets. © 2021, The Author(s)

  • 7.
    Hallström, Elinor
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Bergman, Kristina
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Mifflin, Kathleen
    Dalhousie University, Canada.
    Parker, Robert
    Dalhousie University, Canada.
    Tyedmers, Peter
    Dalhousie University, Canada.
    Troell, Max
    Royal Swedish Academy of Sciences, Sweden; Stockholm University, Sweden.
    Ziegler, Friederike
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Combined climate and nutritional performance of seafoods2019In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 230, p. 402-411Article in journal (Refereed)
    Abstract [en]

    National authorities in many countries advise their populations to eat more seafood, for health and sometimes for environmental purposes, but give little guidance as to what type of seafood should be consumed. The large diversity in species and production methods results in variability both in the nutritional content and in the environmental performance of seafoods. More targeted dietary advice for sustainable seafood consumption requires a better understanding of the relative nutritional benefits against environmental costs of various types of seafood. This study analyzes the combined climate and nutritional performance of seafood commonly consumed in Sweden, originating all over the world. Nutrient density scores, assessed by seven alternative methods, are combined with species- technology- and origin-specific greenhouse gas emission data for 37 types of seafood. An integrated score indicates which seafood products provide the greatest nutritional value at the lowest climate costs and hence should be promoted from this perspective. Results show that seafoods consumed in Sweden differ widely in nutritional value as well as climate impact and that the two measures are not correlated across all species. Dietary changes towards increased consumption of more seafood choices where a correlation exists (e.g. pelagic species like sprat, herring and mackerel)would benefit both health and climate. Seafoods with a higher climate impact in relation to their nutritional value (e.g. shrimp, Pangasius and plaice)should, on the other hand, not be promoted in dietary advice. The effect of individual nutrients and implications of different nutrient density scores is evaluated. This research is a first step towards modelling the joint nutritional and climate benefits of seafood as a concrete baseline for policy-making, e.g. in dietary advice. It should be followed up by modelling other species, including environmental toxins in seafood in the nutrition score, and expanding to cover other environmental aspects.

    Download full text (pdf)
    fulltext
  • 8.
    Hornborg, Sara
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Bergman, Kristina
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Ziegler, Friederike
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Svensk konsumtion av sjömat2021Report (Other academic)
    Abstract [en]

    Seafood has gained increasing attention in discussions on sustainable and healthy diets. This is based on a generally high nutrient content in combination with a comparatively low environmental impact. But there are major differences between different seafoods. Furthermore, information available on Swedish seafood consumption is lacking or associated with uncertainties. Baselines on current consumption are needed to guide consumers and other seafood value chain actors in Sweden. Here Swedish seafood consumption in 2019 is presented, the third RISE report on the topic since 2017. Figures are based on available official statistics on production, import and export supplemented with collected data. The statistics have also been processed, such as grouped by species and recalculated to live weight and edible part by using general conversion factors. Both the previous two RISE reports identified data gaps. This report has therefore strived to reduce the uncertainties and use more data sources as they have been discovered. The methods and data thus differ somewhat between the reports, which implies that the results are not fully comparable. There are also still data gaps. Results show that Swedish consumption of seafood still does not reach the dietary advice by the National Food Agency in Sweden of 2-3 times per week. Furthermore, the overall trend is stable or possibly declining. In 2019, it is estimated that 123 777 tonnes of seafood were available for Swedish consumption in edible form (fillets, peeled and prepared products). This corresponds to an average of 12 kg per person per year (or 230 grams per week, 96 portions per capita). Converted to live weight, this is the equivalent of approximately 276 367 tonnes (or 27 kg per capita). The ten most common species or species groups contributed with over 75 % of the total volume, dominated by salmon, cod, herring and shrimps. The theoretical degree of self-sufficiency is low, 74 % of the volume was imported. Swedish production consists mainly of seafood from commercial fisheries (74 %), of which 3 % came from inland fisheries. Aquaculture contributed 16 % and the remaining from kept catches in recreational fishing. To this end, value chain perspectives – from sea to table – are essential for the sustainable development of the seafood sector. There are opportunities to diversify consumption towards more low impact and nutritious seafoods and increase self-sufficiency, but these shifts need concerted efforts. Consumer studies has shown that many Swedish consumer plan to increase their seafood consumption, and acceptance of more species is increasing. This interest, in combination with the current investments made in research in boosting seafood in Sweden, may offer a momentum to develop more sustainable seafood habits in Sweden.

    Download full text (pdf)
    fulltext
  • 9.
    Hornborg, Sara
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Hallström, Elinor
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Ziegler, Friederike
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Bergman, Kristina
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Troell, Max
    Beijer Institute of Ecological Economics, Sweden; Stockholm Resilience Centre, Sweden.
    Jonell, Malin
    Beijer Institute of Ecological Economics, Sweden; Stockholm Resilience Centre, Sweden.
    Rönnbäck, Patrik
    Uppsala University, Sweden.
    Henriksson, Patrik
    Beijer Institute of Ecological Economics, Sweden; Stockholm Resilience Centre, Sweden; WorldFish, Malaysia.
    Frisk med fisk utan risk?: Betydelsen av svensk konsumtion av sjömat för hälsa och miljö2019Report (Other academic)
    Abstract [en]

    Seafood is a diverse food commodity, comprising of over 2 500 species from capture fisheries and over 600 species from farming, with vast differences between production methods. Dietary advice often includes recommendations to increase consumption of seafood, based on health benefits and that seafood may be produced with less environmental impacts and resources use compared to many other animal-based foods. However, at the same time, there are frequent media alarms related to potential health risks (some species have diet restrictions) and destructive production practices from both fisheries and aquaculture. As a result, there is often confusion on which seafood to eat or not to eat.The aim of this report is primarily to collate available information on health risks and benefits of Swedish seafood consumption, and to combine this with environmental aspects (focus on carbon footprint).Around 40 seafood products consumed in Sweden were included in the analysis. Potential health risks could only be included qualitatively, since the collected data is risk-based and thus not all products are sampled. It was found that the nutritional content and carbon footprint vastly differ between species. There were also several data gaps identified, such as the need for more detailed data on performance from different production systems. The combined assessment of nutritional value and carbon footprint categorised some species as win-win in terms of nutritional content and environmental pressures (such as small pelagic fish), while others could be more categorised as having less nutritional value and with high environmental costs (such as Northern prawn) respectively.The report provides decision support for further data collection needed to enable combined assessment of nutritional risks, benefits and environmental sustainability of seafood products. Results may be used to discuss suitable level of details of dietary advice.

    Download full text (pdf)
    fulltext
  • 10.
    Ziegler, Friederike
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Bergman, Kristina
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Svensk konsumtion av sjömat - en växande mångfald2017Report (Other academic)
    Abstract [sv]

    Den svenska sjömatsmarknaden har kartlagts i syfte att identifiera och kvantifiera de vanligaste arterna av fisk och skaldjur, eller "sjömat", som säljs och konsumeras i Sverige. Offentlig statistik kring volym av import, export och produktion i fiske och vattenbruk för 2015 har utgjort grunden för analysen och kombinerats till att ge en översiktsbild av vad som säljs och konsumeras i Sverige. Merparten företag i fiskbranschen kontaktades och har levererat både kvantitativa och kvalitativa uppgifter.

    Biodiversiteten i den svenska sjömatsimporten visade sig vara hög och omfatta ett hundratal arter eller artgrupper. Volym och viktigaste ursprungsländer presenteras för dessa. Svensk konsumtion av sjömat domineras inte oväntat av lax, torsk och sill. Mer överraskande var att en kategori bestående av oidentifierade torskfiskar, bl a från tropiska vatten, hamnar så högt som på plats 13. Av varje kategori av sjömat (torskfisk, laxfisk, plattfisk, räka, krabba, musslor, tonfisk) redovisas en del ospecifikt tillhörande "Övrigt". Längre ner på listan hamnar nya importerade, odlade arter som guldsparid, havsabborre, men även fiskade arter som nilabborre, tandnoting och ett antal arter av tonfisk, varav flera är kraftigt överfiskade. Exempelvis konsumerades fyra ton av den akut hotade blåfenade tonfisken i Sverige. De här arterna har etablerat sig på den svenska sjömatsmarknaden på senare år. Runt 15 ton ål konsumeras per år i Sverige, både från svenskt fiske och från import, och även den är akut hotad.

    Den totala svenska sjömatskonsumtionen för 2015 är 109 000 ton filé och skaldjur utan skal, vilket motsvarar 11 kg per person eller runt 25 kg hel fisk per person. Av detta är 60 % vildfångat och 40 % odlat. Cirka en fjärdedel av den totala volymen är certifierad av antingen MSC eller ASC. Närmare 75 % av det vi äter är importerat, medan svenskt fiske står för drygt 20 % och svenskt vattenbruk står för runt 6 %. På grund av osäkerheter i rapporteringen av import och export så är dock dessa siffror något osäkra. Den totala konsumtionen har mellan 2011 och 2015 ökat. Kartläggningen har gett nya insikter om diversiteten i den svenska sjömatskonsumtionen och fördelningen mellan arter, trots de osäkerheter som finns.

    Sjömat har en stor potential som både hälsosam och hållbart producerad mat, och Livsmedelsverket rekommenderar att vi äter fisk och skaldjur 2-3 gånger per vecka. För stora grupper betyder detta att de bör äta mer sjömat. Det har dock stor betydelse vilken typ av sjömat man väljer att äta både för hälsa och miljö. Därför är det viktigt med bra kunskap om vad som konsumeras och var och hur det har producerats.

    Genomgången har gett insyn i vad statistiken kan användas till och vilka osäkerheter som finns. Rapporten ger även en rad förslag på hur statistiken skulle kunna förbättras, både genom att ställa krav på att nuvarande rutiner för datainsamling om handel och konsumtion av sjömat i större utsträckning följs och genom att mer långsiktigt arbeta för att förbättra dessa rutiner.

    Download full text (pdf)
    fulltext
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf