Broadband Schottky diode mixers operating at room-temperature are crucial for terahertz heterodyne instrumentation in space-borne applications. In this paper, we present the design of a compact 3.5 THz fundamental single-ended Schottky diode mixer. The design is based on Schottky diodes with a sub-micron anode area, defined using nanolithography techniques, and integrated with suspended strip lines on an ultra-thin GaAs-membrane.
Efficient and compact frequency converters are essential for frequency stabilization of terahertz sources. In this article, we present a 3.5-THz, × 6-harmonic, integrated Schottky diode mixer operating at room temperature. The designed frequency converter is based on a single-ended, planar Schottky diode with a submicron anode contact area defined on a suspended 2-μ m ultra-thin gallium arsenide substrate. The dc-grounded anode pad was combined with the radio frequency E-plane probe, which resulted in an electrically compact circuit. At 200-MHz intermediate frequency, a mixer conversion loss of about 59 dB is measured resulting in a 40-dB signal-to-noise ratio for phase locking a 3.5-THz quantum-cascade laser. Using a quasi-static diode model combined with electromagnetic simulations, good agreement with the measured results was obtained. Harmonic frequency converters without the need of cryogenic cooling will help in the realization of highly sensitive space and air-borne heterodyne receivers.
Human skin phantoms are essential to enable fast, label-free, and reliable testing of pharmaceutical and cosmetic products. We report the characterisation of polyvinyl alcohol-based hydrogel phantoms along with in-vivo skin measurements of three volunteers from 0.2 to 1 THz. The results indicate that frequency-dependent properties of hydrogel phantoms are similar to human skin and show promising prospects of being utilised as a skin equivalent.
This letter presents an experimental characterization technique for assessing the performance of terahertz harmonic mixers across a wide frequency range. The total signal transfer loss of three mixers was measured in both up- and down-conversion configurations, and the conversion loss was determined through the solution of a linear system of equations. The proposed method uses LO signals with a frequency offset to ensure single sideband measurements, thereby eliminating the need for image-reject filters. The three-mixer method was verified by measurements of millimeter-wave mixers, which matched the traditional characterization method using a calibrated source and power meter. Given this successful millimeter-wave demonstration, we characterized three WM-86 Schottky diode × 4-harmonic mixers from 2.2 to 3 THz. This technique presents a notable advantage for conducting broadband mixer characterizations, particularly in the terahertz frequency regime, which lacks tunable, wideband sources.
Quantum-cascade lasers (QCLs) are critical components for high-resolution terahertz spectroscopy, especially in heterodyne spectrometers, where they serve as local oscillators. For this purpose, QCLs with stable frequencies and narrow linewidths are essential since their spectral properties limit the spectral resolution. We demonstrate the phase locking of QCLs around 3.5 and 4.7 THz in mechanical cryocoolers. These frequencies are particularly interesting for atmospheric research because they correspond to the hydroxyl radical and the neutral oxygen atom. The phase-locked loop is based on frequency mixing of the QCLs at 3.5 and 4.7 THz with the sixth and eighth harmonic, respectively, generated by an amplifier-multiplier chain operating around 600 GHz, with a Schottky-diode harmonic mixer. At both frequencies, we achieved a linewidth of the intermediate frequency signal of less than 1 Hz. This is about seven orders of magnitude less than the linewidth of the free-running QCL.