Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aramburu-Zabala, Marta
    et al.
    LORTEK-BRTA, Spain.
    Masurtschak, Simona
    LORTEK-BRTA, Spain.
    Moreno, Ramon
    LORTEK-BRTA, Spain.
    Jean-Jean, Jeremy
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Veiga, Angela
    CEIT-BRTA, Spain.
    Time Series Clustering for Knowledge Discovery on Metal Additive Manufacturing2020In: 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, Springer Science and Business Media Deutschland GmbH , 2020, p. 447-455Conference paper (Refereed)
    Abstract [en]

    This work meets Metal Additive Manufacturing and Time Series Processing. It presents a four-step analytical procedure addressed to support the discovery of defect causes in 3D metal printing. The method has a phase of data space transformation, where the features space is firstly reduced and secondly exploited in a higher dimensional space. Later, a procedure for knowledge discovery is applied. Finally, by analyzing the results, it is concluded the most probable causes of the high rate of defects in the production phase. This procedure is proved with data obtained from a SLM machine, and the results are convincing.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf