Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdelaziz, Omar
    et al.
    RISE Research Institutes of Sweden. Lund University, Sweden.
    Capanema, Ewellyn
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Ajao, Olumoye
    Canmet ENERGY, Canada.
    Kristensen, Tove
    Lund University, Sweden.
    Hosseinaei, Omid
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Benali, Marzouk
    Canmet ENERGY, Canada.
    Hulteberg, Christian
    Lund University, Sweden.
    A Rapid and Tunable Approach for the Fractionation of Technical Kraft Lignin2023In: Chemical Engineering Transactions, ISSN 1974-9791, E-ISSN 2283-9216, Vol. 99, p. 67-72Article in journal (Refereed)
    Abstract [en]

    Reducing the heterogeneity of technical lignin is essential to obtain predictable and high-performance polymeric materials that are suitable for high-value applications. Organic solvents with different polarities and solubilities can be used to fractionate lignin and reduce the complexity and diversity of its chemical structure. Among the various solvents and solvent mixtures, acetone-water mixtures offer an energy-efficient, cost-effective, and environmentally friendly means of lignin fractionation. In the present study, temperature-induced acetone-water fractionation was investigated to refine the properties of a technical softwood Kraft lignin, i.e., LignoBoost™ lignin. Relatively mild operating conditions were tested, namely, temperatures of 70-110°C and autogenous pressure. A factorial experimental design was developed using the Design-Expert® software, and three factors (temperature, time, and acetone concentration) were investigated. It was found that temperature-induced fractionation could increase lignin homogeneity and maintain high lignin solubilization with a short processing time (<1 h). It was also possible to tune the properties of the soluble lignin fraction (yield and weight-average molecular weight) based on the factorial models developed. The techno-economic evaluation confirmed the commercial viability of this fractionation process. 

  • 2.
    Baker, Darren
    et al.
    Baker Consulting, USA.
    Hosseinaei, Omid
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, Biorefinery and Energy.
    Sedin, Maria
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, Papermaking and Packaging.
    Echardt, Linda
    Södra skogsägarna ekonomisk förening, Sweden.
    Capanema, Ewellyn
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, Biorefinery and Energy.
    Lignin-based carbon fiber: effect of softwood kraft lignin separation method on multifilament melt-spinning performance and conversion2019In: 20th International symposium on wood, fiber, and pulping chemistry, 2019Conference paper (Other academic)
    Abstract [en]

    A reference lignin separated from an industrial softwood kraft black liquor via an improved LignoBoost process was compared to four other lignins derived from the same liquor. The four lignins were produced by using a) pH-fractionation within the LignoBoost process, b) ultrafiltration of black liquor prior to the LignoBoost process, and c) solvent leaching of the reference lignin using methanol and d) ethanol.Lignin compositional characteristics and thermal properties were compared, and monofilament extrusion used to assess their potential for successful melt spinning at the 24 filament scale. The lignin prepared by ethanol leaching of the reference lignin was found to be most appropriate for potential pilot scale fibre production. This was owing to a high purity, lower comparative glass transition temperature (Tg), and good spinning performance.Thermal pretreatments of the ethanol leached lignin gave a selection of enhanced lignins which were characterized for comparison, and melt spun on pilot multifilament equipment. The enhanced lignins could be continuously melt spun giving filaments with diameters as low as 10 μm and with minimal defects. Conversion of selected filaments provided carbon fibres with a tensile strength of 1259 ± 159 MPa, tensile modulus of 67 ± 3 GPa and diameter of 7.3 ± 0.5 μm.

    Download full text (pdf)
    fulltext
  • 3.
    Balakshin, Mikhail
    et al.
    BOKU, Austria.
    Capanema, Ewellyn
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy.
    New opportunities in the valorization of technical lignins2017In: 19th International symposium on wood, fibre and pulping chemistry, August 28 - September 1, 2017, Porto Seguro, Brazil, 2017, p. 178-182Conference paper (Refereed)
    Abstract [en]

    Commercialization of lignins for high-value products should dramatically improve the biorefinery economy and help the growing industry to overcome current economical challenges. However, this requires lignin engineering to obtain products with optimized characteristics for specific applications. This paper reviews important issues of lignin engineering, such as developments in lignin structural analysis, application of small-scale high throughput methods to evaluate lignin performance as well as new achievements in valorization of biorefinery lignins (lignin-cellulose synergism, green and cost efficient methods to upgrade crude biorefinery lignins). These recent developments allow a reconsideration of biorefinery lignins as highvalue products for different applications.

  • 4.
    Balakshin, Mikhail
    et al.
    Aalto University, Finland.
    Capanema, Ewellyn
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy, Biorefinery and Energy.
    Huang, Zeen
    FP Innovations, Cananda.
    Sulaeva, Irina
    BOKU, Austria.
    Rojas, Orlando
    Aalto University, Finland.
    Feng, Martin
    FP Innovations, Canada.
    Rosenau, Thomas
    BOKU, Austria.
    Potthast, Antje
    BOKU, Austria.
    Recent achievement in the valorization of technical lignins2018In: The 8th Nordic Wood Biorefinery Conference: NWBC 2018 : proceedings / [ed] Hytönen Eemeli, Vepsäläinen Jessica, Espoo, 2018, p. 151-156Conference paper (Refereed)
  • 5.
    Balakshin, Mikhail
    et al.
    Aalto University, Finland.
    Capanema, Ewellyn
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Zhu, Xuhai
    Aalto University, Finland; Chinese Academy of Sciences, China.
    Sulaeva, Irina
    BOKU University of Natural Resources and Life Sciences, Austria.
    Potthast, Antje
    BOKU University of Natural Resources and Life Sciences, Austria.
    Rosenau, Thomas
    BOKU University of Natural Resources and Life Sciences, Austria.
    Rojas, Orlando
    Aalto University, Finland; University of British Columbia, Canada.
    Spruce milled wood lignin: Linear, branched or cross-linked?2020In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 13, p. 3985-4001Article in journal (Refereed)
    Abstract [en]

    The subject of lignin structure, critical for fundamental and practical reasons, is addressed in this study that includes a review of the methods applied to elucidate macromolecular branching. The recently available approaches for determination of the absolute molecular mass of spruce milled wood lignin (MWL) along with the quantification of terminal groups clearly indicate that MWL is significantly branched and cross-linked (with ∼36% lignin units partaking in these linkages). Results from independent methods imply that about half of the branching and crosslinking linkages involve aromatic rings, predominantly 5-5′ etherified units; meanwhile, a significant number of linkages are located in the side chains. Quantitative 13C NMR analyses suggest that the branches involve different aliphatic ether (alkyl-O-alkyl) types at the α- and γ-positions of the side chain, with intact β-O-4 linkages. While the exact structures of these moieties require further investigation, our results point to the fact that conventional lignification theory disagrees with the presence of such key moieties in softwood MWL and the observed high degree of branching/crosslinking. Potential reasons for the noted discrepancies are discussed.

  • 6.
    Balakshin, Mikhail Yu
    et al.
    Aalto University, Finland.
    Capanema, Ewellyn
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Sulaeva, Irina
    University of Natural Resources and Life Sciences, Austria; Wood K plus, Austria.
    Schlee, Philipp
    Aalto University, Finland.
    Huang, Zeen
    FPInnovations, Canada.
    Feng, Martin
    FPInnovations, Canada.
    Borghei, Maryam
    Aalto University, Finland.
    Rojas, Orlando J
    Aalto University, Finland; University of British Columbia, Canada.
    Potthast, Antje
    University of Natural Resources and Life Sciences, Austria.
    Rosenau, Thomas
    University of Natural Resources and Life Sciences, Austria, Åbo Akademi University, Finland.
    New Opportunities in the Valorization of Technical Lignins.2021In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 14, no 4, p. 1016-1036Article in journal (Refereed)
    Abstract [en]

    Sugar-based biorefineries have faced significant economic challenges. Biorefinery lignins are often classified as low-value products (fuel or low-cost chemical feedstock) mainly due to low lignin purities in the crude material. However, recent research has shown that biorefinery lignins have a great chance of being successfully used as high-value products, which in turn should result in an economy renaissance of the whole biorefinery idea. This critical review summarizes recent developments from our groups, along with the state-of-the-art in the valorization of technical lignins, with the focus on biorefinery lignins. A beneficial synergistic effect of lignin and cellulose mixtures used in different applications (wood adhesives, carbon fiber and nanofibers, thermoplastics) has been demonstrated. This phenomenon causes crude biorefinery lignins, which contain a significant amount of residual crystalline cellulose, to perform superior to high-purity lignins in certain applications. Where previously specific applications required high-purity and/or functionalized lignins with narrow molecular weight distributions, simple green processes for upgrading crude biorefinery lignin are suggested here as an alternative. These approaches can be easily combined with lignin micro-/nanoparticles (LMNP) production. The processes should also be cost-efficient compared to traditional lignin modifications. Biorefinery processes allow much greater flexibility in optimizing the lignin characteristics desirable for specific applications than traditional pulping processes. Such lignin engineering, at the same time, requires an efficient strategy capable of handling large datasets to find correlations between process variables, lignin structures and properties and finally their performance in different applications.

  • 7.
    Capanema, Ewellyn
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Balakshin, M. Y.
    Aalto University, Finland.
    Kinetics of the oxidative ammonolysis of lignin2021In: What to Know about Lignin, Nova Science Publishers, Inc. , 2021, p. 303-328Chapter in book (Other academic)
    Abstract [en]

    The effect of reaction variables on the oxidative ammonolysis of technical lignins was studied in the range of 0.4-0.8 M NH4OH, reaction temperature of 70 - 130°C, oxygen pressure of 0.5 - 1.2 MPa and pH 9- 12.7. The kinetics of nitrogen incorporation consists of two phases, both of which follow a pseudo-first order reaction law. The reaction is 1st and 0.5 order with respect to oxygen and NH4OH concentration, respectively. The effective activation energy of nitrogen incorporation is rather low, 33-43 kJ/mol. The dependence of the reaction rate on pH of the reaction solution goes through a maximum. Linear correlation between nitrogen incorporation and O-demethylation, CO2 formation, oxygen uptake as well as oxygen incorporation were observed. Structural analyses of the soluble N-modified lignins by FTIR and 1H NMR spectroscopic techniques showed only qualitative differences of the spectra obtained under different reaction conditions indicating that the reaction conditions do not affect the reaction pathways. A scheme of possible reaction mechanisms is postulated based on the experimental results. 

  • 8.
    Capanema, Ewellyn
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioeconomy.
    Balakshin, Mikhail
    BOKU, Austria.
    Application of Omno polymers in PF wood adhesives2017In: 19th International symposium on wood, fibre and pulping chemistry, August 28 - September 1, 2017, Porto Seguro, Brazil, 2017, p. 65-69Conference paper (Refereed)
    Abstract [en]

    The Plantrose® technology is a promising biorefinery method which enables the production of C5 and C6 sugars from different lignocellulosics using sub- and supercritical water in a two-step process. The lignin rich solids after carbohydrate hydrolysis containing various amounts of residual cellulose are trademarked as OmnoTM polymers. The reactivity and bonding performance of different Omno polymers in direct partial substitution of phenol-formaldehyde adhesive resins (PF) for the manufacture of oriented strand board (OSB) and softwood plywood were evaluated by a fast bench screening test using the Automatic Bond Evaluation System (ABES) and by pilot trials on the production and testing of wood panels. The results showed that about 1/3 of commercial glues could be successfully substituted by Omno polymers without any significant drop in the adhesive reactivity and properties of the resulting wood panels. Selected Omno polymers had superior performance as compared to high-purity pulping lignins (Kraft, soda and organosolv) due to a positive effect of the residual cellulose in the Omnopolymers on the adhesive performance. Hardwood lignins had no disadvantages as compared to various softwood lignins, in strict contrast to the current dogma.

  • 9.
    Tomani, Per
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Arkell, Anders
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Capanema, Ewellyn
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Hosseinaei, Omid
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Learnings and Aspects on Kraft Lignin Separation and Valorisation2022In: The 10th Nordic Wood Biorefinery Conference / [ed] Atte Virtanen, Helsinki, 2022, p. 29-29Conference paper (Other academic)
    Abstract [en]

    Process-integrated, continuous, separation of lignin from kraft pulp mills which results in a ligninwith low ash content (0.05-1 %) is relatively new technology compared to traditional kraft pulping subprocesses,like recovery boilers, lime kilns, white liquor preparation etc. The LignoBoost technology wasdemonstrated in 2007 and the first commercial full-scale process started in 2013, delivered to Domtarby Valmet. This means that this concept now has been in commercial scale operation for almost 10years. There is also an alternative commercialized concept available today from another supplier,NORAM International. The idea to integrate lignin separation into a kraft pulp mill is today quite provencommercial technology.This paper will discuss different learnings, experiences, from the early development of theLignoBoost process, which includes handling of the separated lignin followed by drying. The dustexplosion risk is relatively high for dry kraft lignin due to a high kst value – so the paper will also discussif there are opportunities to reduce this risk. The paper will also briefly discuss promising productsegments for kraft lignin.

    Download full text (pdf)
    Full text
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf