Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cherian, Dennis
    et al.
    Linköping University, Sweden.
    Armgarth, Astrid
    Linköping University, Sweden.
    Beni, Valerio
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Linderhed, Ulrika
    RISE - Research Institutes of Sweden, ICT, Acreo. Linköping University, Sweden.
    Tybrandt, Klas
    Linköping University, Sweden.
    Nilsson, David
    Simon, Daniel T
    Linköping University, Sweden.
    Berggren, Magnus
    Linköping University, Sweden.
    Large-area printed organic electronic ion pumps2019In: Flexible and Printed Electronics, Vol. 4, no 2Article in journal (Other academic)
    Abstract [en]

    Biological systems use a large variety of ions and molecules of different sizes for signaling. Precise electronic regulation of biological systems therefore requires an interface which translates the electronic signals into chemically specific biological signals. One technology for this purpose that has been developed during the last decade is the organic electronic ion pump (OEIP). To date, OEIPs have been fabricated by micropatterning and labor-intensive manual techniques, hindering the potential application areas of this promising technology. Here we show, for the first time, fully screen-printed OEIPs. We demonstrate a large-area printed design with manufacturing yield >90%. Screen-printed cation- and anion-exchange membranes are both demonstrated with promising ion selectivity and performance, with transport verified for both small ions (Na+, K+, Cl) and biologically-relevant molecules (the cationic neurotransmitter acetylcholine, and the anionic anti-inflammatory salicylic acid). These advances open the 'iontronics' toolbox to the world of printed electronics, paving the way for a broader arena for applications.

  • 2.
    Poxson, D. J.
    et al.
    Linköping University, Sweden.
    Gabrielsson, E. O.
    Linköping University, Sweden.
    Bonisoli, A.
    Linköping University, Sweden; Istituto Italiano di Tecnologia, Italy; Sant'Anna School of Advanced Studies, Italy.
    Linderhed, Ulrika
    RISE - Research Institutes of Sweden, ICT, Acreo. Linköping University, Sweden.
    Abrahamsson, T.
    Linköping University, Sweden.
    Matthiesen, I.
    Linköping University, Sweden; KTH Royal Institute of Technology, Sweden.
    Tybrandt, K.
    Linköping University, Sweden.
    Berggren, M.
    Linköping University, Sweden.
    Simon, D. T.
    Linköping University, Sweden.
    Capillary-Fiber Based Electrophoretic Delivery Device2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 15, p. 14200-14207Article in journal (Refereed)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple "one-pot" fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including "large" substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels' fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.

  • 3.
    Sani, Negar
    et al.
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Linderhed, Ulrika
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Sandberg, Mats
    RISE - Research Institutes of Sweden, ICT, Acreo. Mid Sweden University, Sweden.
    Monolithically integrated electrochemical energy storage modules2018In: Journal of Energy Storage, ISSN 2352-152X, Vol. 16, p. 139-144Article in journal (Refereed)
    Abstract [en]

    The concept of monolithic integration of electrochemical energy storage modules was tested on serially connected supercapacitor cells balanced by passive resistive dissipation. Five electrode pairs with collectors, interconnects, corrosion protection layers, electrode material and shunt resistors were printed on a single substrate. The printed patterns, lamination film, and a hot-sealing tool were designed so that upon folding, lamination, and electrolyte filling and sealing, five serial cells were formed with each having a shunt resistance. In an open circuit idling period following charge and discharge, the standard deviation of the individual cell voltages decreased, demonstrating the balancing function of this so called “modulit”, a short term proposed for a monolithically integrated electrochemical energy storage module.

  • 4.
    Xiong, Kunli
    et al.
    Chalmers University of Technology, Sweden.
    Tordera, Daniel
    Linköping University, Sweden.
    Emilsson, Gustav
    Chalmers University of Technology, Sweden.
    Olsson, Oliver
    rdot AB, Sweden.
    Linderhed, Ulrika
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Jonsson, Magnus P.
    Linköping University, Sweden.
    Dahlin, Andreas B.
    Chalmers University of Technology, Sweden.
    Switchable Plasmonic Metasurfaces with High Chromaticity Containing only Abundant Metals2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 11, p. 7033-7039Article in journal (Refereed)
    Abstract [en]

    Plasmonic color generation offers several advantages but is also limited by the cost and availability of noble metals like gold. In this work, we present color-tunable metasurfaces with high chromaticity and reflectivity consisting of an aluminum mirror, a dielectric spacer, and a plasmonic nanohole array in copper. Copper is shown to be an excellent alternative to gold when properly protected from oxidation and makes it possible to generate a wide RGB gamut covering 27% of the standard RGB. By patterning the metasurfaces into microscale pixel triplets, color photos can be well reproduced with high resolution over wafer-sized areas. Further, we demonstrate active modulation of the reflected intensity using an electrochromic conductive polymer deposited on top of the nanostructures by screen printing. This technology opens up for ultrathin and flexible reflective displays in full color, that is, plasmonic electronic paper, compatible with large-scale sustainable production.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7