Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Franciscangelis, Carolina
    et al.
    University of Campinas, Brazil.
    Fruett, Fabiano
    University of Campinas, Brazil.
    Margulis, Walter
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Kjellberg, Leif
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Floridia, Claudio
    CPqD, Brazil.
    Real-time multiple machines sound listening using a phase-OTDR based distributed microphone2017In: SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC 2017, 2017Conference paper (Refereed)
    Abstract [en]

    We propose and experimentally demonstrate a spatially tunable phase-OTDR based distributed microphone for listening to the sound of multiple machines. The distributed acoustic sensing capability, allied with the real-time spatial tuning, enables listening to a drill and to a cooling water system pump placed in two different sections along a single optical fiber, one at a time. The recorded acoustic waveform profile of both machines agreed with their operating cycles. Moreover, the sounds generated by both engines are successfully distinguished with the proposed method even when both machines are operating simultaneously..

  • 2.
    Franciscangelis, Carolina
    et al.
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Lindblom, Magnus
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Margulis, Walter
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Tow, Kenny
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Sjölander, Ola
    KTH Royal Institute of Technology, Sweden.
    Kahlman, Lars
    SKF AB, Sweden.
    Bankeström, Olle
    SKF AB, Sweden.
    On-field validation of real-Time phase-OTDR for roller bearing monitoring2019In: Proceedings of SPIE - The International Society for Optical Engineering, SPIE , 2019Conference paper (Refereed)
    Abstract [en]

    This work presents an on-field validation of an in-house built real-Time phase-OTDR for monitoring the status of roller bearings. The acoustic sensor prototype was designed and assembled at RISE and evaluated on a 1 m diameter bearing at SKF AB facilities in Göteborg, Sweden. A 0.24 numerical aperture single-mode optical fiber was installed in the bearing lubrication groove, which is 50 mm large and 5 mm deep. Tests were performed to verify the response of the phaseOTDR to acoustic emissions in the bearing such as hammer hits and running the rollers at different loads. The fiber optic sensor results agree with the measurements performed by a standard industrial high sensitivity electronic accelerometer used for comparison. Moreover, as opposed to the reference electronic sensor, the phase-OTDR proved to be insensitive to electrical disturbances present on the environment.

  • 3.
    Munoz, Daniel M.
    et al.
    University of Brasilia, Brazil.
    Franciscangelis, Carolina
    University of Campinas, Brazil.
    Margulis, Walter
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Fruett, Fabiano
    University of Campinas, Brazil.
    Soderquist, Ingemar
    Saab AB, Sweden.
    Low latency disturbance detection using distributed optical fiber sensors2017In: Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control, ICNSC 2017, 2017, p. 372-377Conference paper (Refereed)
    Abstract [en]

    Distributed optical fiber sensors based on phase-sensitive optical time domain reflectometry (Φ-OTDR) are feasible options to detect perturbations in kilometric security perimeters or mechanical structures. This technique takes advantage of electromagnetic interference immunity, small dimensions, lightweight, flexibility, and capability. Moreover, this technique can be combined with dedicated hardware architectures, in order to improve its performance and reliability. This work proposes the use of parallel hardware architectures to implement real-time detecting and locating perturbations in a Φ-OTDR distributed optical fiber vibration sensor. Hardware architectures of the iterative moving average filter and the Sobel filter were mapped on field programmable gate arrays, exploring the intrinsic parallelism in order to achieve real-time requirements. A performance comparison between the proposed solutions was addressed in terms of hardware cost, latency and power consumption.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9