Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Englund, Finn
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Wedin, Helena
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Ribul, Miriam
    London Doctoral Design Centre (LDoC), UK.
    de la Motte, Hanna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Östlund, Åsa
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Textile tagging to enable automated sorting and beyond: a report to facilitate an active dialogue within the circular textile industry2018Report (Other academic)
  • 2. Wedin, Helena
    et al.
    Källman, Björn
    MoRe, Sweden.
    Kristinsdottir, Anna Runa
    RISE - Research Institutes of Sweden, Materials and Production, IVF.
    Niit, Ellinor
    Swedish School of Textile, Sweden.
    Mansoor, Zaheer
    re:newcell, Sweden.
    Lindgren, Christofer
    re:newcell, Sweden.
    Rammsy, Hanna
    MoRe, Sweden.
    Evaluation of dyeing and finishingcomponents in recycling and regeneration ofcoloured textiles prototypes2018Report (Other academic)
    Abstract [en]

    The ability to create secondary raw materials with low impurity content is importantfrom a fibre regeneration processing perspective. Cotton textiles contain colourantsand textile finish, which can be considered as impurities in a chemical recyclingprocess. Removal of such impurities in a decolourisation stage would enhance the fibredissolving capacity and stabilise and simplify the fibre regeneration process.Moreover, the removal of impurities from secondary raw materials is also importantfrom an environmental and health perspective. Chemical recycling has the potentialto deal with the risk of retaining or spreading hazardous substances further inre-circulated textile loops. Of specific concern are colourants or additives withcarcinogenic or endocrine disruptive attributes as well as bioaccumulative substancessuch as PFAS (per- and polyfluoroalkyl substances), which are commonly used intextiles for dirt and water repellency.This report describes an experimental evaluation of physical properties of decolourisedcotton regenerated into viscose fibres and an analysis of potentially hazardous textilefinish components throughout a decolourisation approach. The three main researchquestions in this report are:1. Can we obtain viscose fibres from a decolourised black cotton fabric withsimilar physical properties as commercial viscose fibres by using the re:newcelldecolourisation approach?2. Can the impact from a DMeDHEU(1) anti-wrinkle and a fatty acid softener finish onthe physical viscose fibre properties be eliminated using this decolourisation approach?3. Could chemical recycling be a potential solution for recirculation of textiles whichhave a risk of containing hazardous substances of for example PFAS dirt and waterrepellent type?

    The project has been performed within the Mistra Future Fashion research program byjoint work from re:newcell, MoRe research, Swerea IVF, Swedish School of Textile and RISE,and with support from the companies DyStar®, Lenzing AG, H&M, I:CO, Boob design,Wiges, New Wave Group, Filippa K and Kappahl. The part of the study that concerned thedirt and water repellent was performed in cooperation with the research project SUPFESfunded by the Swedish Research Council for Environment, Agricultural Sciences andSpatial Planning (FORMAS) under grant agreement No. 2012-2148.The study showed that viscose fibres can be produced from decolourised cotton usingthe re:newcell decolourisation approach. However, the desired physical fibre propertieswere not obtained. More optimisation in the decolourisation stage is needed to adapt thecotton substrate for the viscose process.

    A first indication of the softener to positively affect tenacity of the viscose fibre wasobserved. The anti-wrinkle treated fabric showed a tendency in higher reduced cloggingnumber, but no influence on the physical fibre properties was seen. While caution shouldbe taken in drawing conclusions from the few performed trials, it seems likely that theimpact from the tested types of anti-wrinkle agent and softener on the viscose processcould not be eliminated by the use of the decolourisation approach. This also raisesthe question of how persistent the softener is in a decolourisation process. The resultsfrom the analysis on dirt and water repellent substances (DWR/PFAS) throughout thedecolourisation process showed that one third remained in the pulp. This suggests thatthe DWR binds to the fibres in a way which the decolourisation process is not able toreverse.Taken together, these results are not sufficient to prove the hypothesis of whetherchemical recycling could be a potential solution for recirculation of textiles with risk forcontaining hazardous substances of this sort.The trials lead to the following conclusions: The used decolourisation approach haspotential to remove the type of reactive dye, wrinkle-free agent and softener tested inthis study. Adaption of the decolourisation process for the cotton substrate is neededin further trials. In the specific case of cotton flows with presence of dirt and waterrepellent finish we recommend designing of another decolourisation approach.

  • 3.
    Wedin, Helena
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Lopes, Marta
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Sixta, Herbert
    Aalto University, Finland.
    Hummel, Michael
    Aalto University, Finland.
    Evaluation of post-consumer cellulosic textile waste for chemical recycling based on cellulose degree of polymerization and molar mass distribution2019In: Textile research journal, ISSN 0040-5175, E-ISSN 1746-7748Article in journal (Refereed)
    Abstract [en]

    The aim of this study is to improve the understanding of which end-of-life cellulosic textiles can be used for chemical recycling according to their composition, wear life and laundering—domestic versus service sector. For that purpose, end-of-life textiles were generated through laboratorial laundering of virgin fabrics under domestic and industrial conditions, and the cellulose content and its intrinsic viscosity and molar mass distribution were measured in all samples after two, 10, 20, and 50 laundering cycles. Results presented herein also address the knowledge gap concerning polymer properties of end-of-life man-made cellulosic fabrics—viscose and Lyocell. The results show that post-consumer textiles from the home consumer sector, using domestic laundering, can be assumed to have a similar, or only slightly lower, degree of polymerization than the virgin textiles (−15%). Post-consumer textiles from the service sector, using industrial laundering, can be assumed to have a substantially lower degree of polymerization. An approximate decrease of up to 80% of the original degree of polymerization can be expected when they are worn out. A higher relative decrease for cotton than man-made cellulosic textiles is expected. Furthermore, in these laboratorial laundering trials, no evidence evolved that the cellulose content in blended polyester fabrics would be significantly affected by domestic or industrial laundering. With respect to molar mass distribution, domestic post-consumer cotton waste seems to be the most suitable feedstock for chemical textile recycling using Lyocell-type processes, although a pre-treatment step might be required to remove contaminants and lower the intrinsic viscosity to 400–500 ml/g. © The Author(s) 2019.

  • 4.
    Wedin, Helena
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Niit, Ellinor
    Swedish School of Textiles, Sweden.
    Ahmad Mansoor, Zaheer
    re:newcell, Sweden.
    Kristinsdottir, Anna Runa
    RISE - Research Institutes of Sweden, Materials and Production, IVF.
    de la Motte, Hanna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Materials and Production, IVF.
    Östlund, Åsa
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Lindgren, Christofer
    re:newcell, Sweden.
    Investigation of recycled viscose fibres after removal of a reactive dye combination and an easy care finish agent2017Conference paper (Other academic)
    Abstract [en]

    Textile-to-textile recycling from cotton textiles can be done either mechanically or chemically. In chemical textile recycling of cotton there are challenges to overcome in order to regenerate new fibres. Two of the challenges among others are reactive dyes and wrinkle-free finishes that could disturb the regeneration process steps since these finishes are covalently linked to the cellulose.

    This poster discusses the impact of using a novel alkaline/acid bleaching sequence to strip reactive dyes and wrinkle-free finish (DMDHEU) from cotton textile for production of regenerated viscose fibre properties. The results might generate a promising step forward to overcome quality challenges for cellulosic chemical recycling.

  • 5.
    Wedin, Helena
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Niit, Ellinor
    Swedish School of Textiles, Sweden.
    Mansoor, Z. Ahmad
    re:newcell AB, Sweden.
    Kristinsdottir, Anna Runa
    RISE - Research Institutes of Sweden, Materials and Production, IVF.
    de la Motte, Hanna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Materials and Production, IVF.
    Östlund, Åsa
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Lindgren, Christofer
    re:newcell AB, Sweden.
    Preparation of Viscose Fibres Stripped of Reactive Dyes and Wrinkle-Free Crosslinked Cotton Textile Finish2018In: Journal of polymers and the environment, ISSN 1566-2543, E-ISSN 1572-8919, Vol. 26, no 9, p. 3603-3612Article in journal (Refereed)
    Abstract [en]

    The chemical recycling of cellulosic fibres may represent a next-generation fibre–fibre recycling system for cotton textiles, though remaining challenges include how to accommodate fibre blends, dyes, wrinkle-free finishes, and other impurities from finishing. These challenges may disrupt the regeneration process steps and reduce the fibre quality. This study examines the impact on regenerated viscose fibre properties of a novel alkaline/acid bleaching sequence to strip reactive dyes and dimethyloldihydroxyethyleneureas (DMDHEU) wrinkle-free finish from cotton textiles. Potentially, such a bleaching sequence could advantageously be integrated into the viscose process, reducing the costs and environmental impact of the product. The study investigates the spinning performance and mechanical properties (e.g., tenacity and elongation) of the regenerated viscose fibres. The alkaline/acid bleaching sequence was found to strip the reactive dye and DMDHEU wrinkle-free finish from the cotton fabric, so the resulting pulp could successfully be spun into viscose fibres, though the mechanical properties of these fibres were worse than those of commercial viscose fibres. This study finds that reactive dyes and DMDHEU wrinkle-free finish affect the viscose dope quality and the regeneration performance. The results might lead to progress in overcoming quality challenges in cellulosic chemical recycling. 

  • 6.
    Östlund, Åsa
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    de la Motte, Hanna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Östmark, Emma
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Wedin, Helena
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Sandin, Gustav
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Chemical Recycling of Textile Fibres2018In: Sustainable Fibre Toolkit 2018 / [ed] Annie Gullingsrud, Stockholm: Stiftelsen Svensk Textilforskning , 2018, 2, p. 169-171Chapter in book (Other academic)
  • 7.
    Östlund, Åsa
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Material och produkter (TRm).
    Wedin, Helena
    Bolin, Lisa
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Energiteknik (ET).
    Berlin, Johanna
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Energiteknik (ET).
    Jönsson, Christina
    RISE - Research Institutes of Sweden, Materials and Production, IVF, Energi och miljö.
    Posner, Stefan
    RISE - Research Institutes of Sweden, Materials and Production, IVF, Energi och miljö.
    Smuk, Lena
    Eriksson, Magnus
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP - Sveriges Tekniska Forskningsinstitut, SP Trä.
    Sandin, Gustav
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Hållbar Samhällsbyggnad, Biobaserade material och produkter.
    Textilåtervinning: tekniska möjligheter och utmaningar2015Report (Refereed)
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7