Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brunklaus, Birgit
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Berlin, Johanna
    RISE - Research Institutes of Sweden.
    Falk, Petter
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    What can LCA learnfrom service design: User integration?2017Conference paper (Other academic)
    Abstract [en]

    In a sustainable society, the use of resources and climate issues needs to be reduced, and the introduction of services seems to be the solution in the new “service” economy. Similar to products, services are designed to fulfill costumer needs. However, customers are seldom involved in the design of products, while they are in the process of service design. Here we look at the leisure service sector to find method concepts for sustainable analysis (Berlin & Brunklaus 2016).

    So far, a literature study and LCA studies on services (Brunklaus 2016) like the opera and theatre (Algehed et al 2010), tourist (Brunklaus et al 2015), and film (Brunklaus et al 2015) has been performed using a producer and consumer perspective, which led to discussion about the reuse of scenes at the opera, and discussion about tourist packages and discussion about film production design. To get this even further, we have looked into the area of service design.

    The purpose of this project is to further develop the various LCA based methods (E-LCA, S-LCA, LCC) in order to integrate user into the design process. The questions are: What can the life cycle methodology learn from service design? What are the similarities and differences?

    The service design includes several parts: Prepare and define the problem, capture the service and user through ethograpichly oriented research tools, Understand the employee and the user, Improve the working process, and Renew the user function (SP service LABs 2016). The life cycle methodology includes also several parts: Goal and scope including the problem and the system of study, the Inventory includes the technical system and environmental or social or economic data, the Impact Assessment includes indicators, and the Interpretation includes technical solutions and hot spot analysis of various kinds (Bauman and Tillman 2004).

    The results show that the service design is developed close to the customer, including study visits and observation, which the life cycle methodology seems to lack. On the other hand the life cycle methodology gains in the well-structured goal and scope. In order to develop the life cycle methodology further we therefore recommend integrating the user more and focusing on the implementation and visualization, similar to Service design.

  • 2.
    Brunklaus, Birgit
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Molnar, Stefan
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Sandin, Gustav
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Torén, Johan
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Mangold, Mikael
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Choice of social indicators within technology development – the case of mobile biorefineries in Europe2018In: Social LCA: People and Places for Partnership, 2018, p. 162-166Conference paper (Other academic)
  • 3.
    Brunklaus, Birgit
    et al.
    RISE - Research Institutes of Sweden.
    Reitsma, Lizette
    RISE - Research Institutes of Sweden.
    Jennie, Schaeffer
    Region Västmanland Museum, Sweden.
    Ryöppy, Merja
    University of Southern Denmark, Denmark.
    Ho, Hayley
    RISE - Research Institutes of Sweden.
    Nyström, Sofie
    RISE - Research Institutes of Sweden.
    Carbon theatre in public spaces: Using participatory theatre and co-designmethods in a museum for shaping lowcarbon lifestyles2019In: Life Cycle Management Conference 2019, Poznan, Polen, 2019, Vol. 9, article id 97Conference paper (Refereed)
    Abstract [en]

    Over the past ten years, the need for public spaces to deal with burning societal issues, such as climate change, has become even more important. Participatory theatre offers ways to meet the longing for shared forums by engaging large groups of people in exploring difficult social dilemmas. It can potentially empower participants to change their own situations and organizations. In a previous design research project Quantifying your carbon footprint, this gap was in focus. We will use the findings from the Quantifying carbon footprint project as an entry point and expand it with Life Cycle Assessment (LCA) on objects from the current museum collection and on daily life activities that have a carbon impact. The goal of the project is to explore and understand the climate and environmental impacts of lifestyles. The method used here are participatory theatre and co-design methods and pop-up exhibitions are used to engage young citizens in negotiating social norms and understanding their possible impact on CO2 emissions. The museum collections play a crucial role in the process of understanding how LCA calculations are related to mundane objects and reflecting on the temporality of social norms that are negotiated and re-negotiated through the way we handle products and objects in our everyday life. Developing new practices for museums involving participatory methods in order to engage young citizens in climate research. The results of the introductory meeting and study visit show that using the museum’s collection, the history and the value of things in the past centuries become clear and easier to reflect on compared to today’s unsustainable lifestyle – travelling and over consumption. Carbon Dioxide Theatre is an attempt to shape a shared space on a local level, in line with the priorities of the museum’s three years plan.

  • 4.
    Brunklaus, Birgit
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Rex, Emma
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Berlin, Johanna
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Røyne, Frida
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Ulmanen, Johanna
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Aid, Graham
    Ragnsells, Sweden.
    The value of transdisciplinary perspectives duringtransition to a bio-based economy: The prospect for converting mixed food wasteinto bio-based chemicals2018In: Designing Sustainable Technologies, Products andPolicies: From Science to Innovation / [ed] Enrico Benetto, Kilian Gericke, Mélanie Guiton, Spinger , 2018, p. 327-335Chapter in book (Other academic)
    Abstract [en]

    Within the current political and industrial transition to a bio-based

    economy, food waste can be an alternative resource for biobased chemicals. This

    chapter describes a case study that evaluates the prospect for Swedish production of

    biobased chemicals such as succinic acid from food waste. The evaluation is

    addressed from multiple systems perspectives. From a technical and resource

    system perspective, the results of the case study show that production seems possible.

    However, from a social system perspective succinic acid production currently

    lacks institutional support and actor commitment and alignment for realizing

    development in Sweden. From an environmental and life cycle perspective, the

    scoping of the analysis is decisive for the results. The study shows that multiple

    perspectives complement each other when seeking a nuanced evaluation of technical

    innovation and give insights for the intended value chain.

  • 5.
    Brunklaus, Birgit
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Schnurr, Maria
    Sonesson, Ulf
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    8 ton society Sweden: Assessing the material footprint of sharing and circular lifestyles in housing,mobility and food2019In: Life Cycle Management Conference 2019, Poznan, Polen, 2019, Vol. 9, article id 96Conference paper (Refereed)
    Abstract [en]

    The average Swedish household throws away 480 kg of solid garbage per year. But this amount of material is only a small share of the resource consumption that our lifestylegives rise to. Our homes need to be built, goods produced, we are transported,and food is produced. In today's linear consumption society, every individual inthe EU is estimated to have a material footprint of 29 tons/year on average – afootprint that needs to shrink to 8 tons in order to stay within “planetaryboundaries”. In a circular system, products are recycled and shared leading toless resources and materials needed, but do we know how much? Which resourceand material consumption is generated in Sweden? What could we achieve througha transition to a sharing and circular economy, and how would our consumptionpatterns look like within a sustainable material lifestyle? The goal of thisstudyis to assess the material footprint of sharing and circular lifestyles inhousing, mobility and food system. "8 ton society" takes athree-level method approach: (1) National: assessing the material footprint ofsharing and circular lifestyles in housing, mobility and food systems on anational level. (2) Municipal: Mapping material and waste streams at municipallevel (for the three Swedish municipalities Göteborg, Malmö och Umeå), by whichmunicipalities can identify opportunities for a circular society, for exampleby supplementing existing climate strategies and waste plans with circularaction plans. (3) Household: Combined with a household level analysis ofmaterial footprints, the project contributes to behavioral change at householdlevel as well as strengthened decision making and innovation at national andmunicipal level. The results of the study are material footprints and scenariosthat are used as basis for the development of reduction measures. The scenariosdescribe potential “8t societies” for Sweden, meaning potential policy andsocietal innovations that allow for a drastic reduction of material footprint.These include sharing and circular solutions. Additionally, the project willcontrast the Swedish results to similar projects that have been carried out in Finland and Germany.

  • 6.
    Brunklaus, Birgit
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Stahl, Selim
    Lorentzon, Katarina
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Berlin, Johanna
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Socio-economic analysis based on a life cycle perspective: The comparison of existing and emerging production process for trimethyl phosphite2017Conference paper (Other academic)
  • 7.
    Kurkinen, Eva-Lotta
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Al-Ayish, Nadia
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Brick, Karolina
    Riksbyggen, Sweden.
    Rönneblad, Anders
    Cementa, Sweden.
    Brunklaus, Birgit
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    During, Otto
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Larsson, Oskar
    Lund University, Sweden.
    Kriterier för resurssnålt byggande i praktiken: Slutrapport från forskningsprogrammet E2B2 – energieffektivtbyggande och boende2018Report (Other academic)
    Abstract [sv]

    Arbetet omfattar uppföljning av ställda kriterier för låg klimatpåverkan från betong vid upphandlingav betongstomme för brf. Viva i Göteborg. Kriterierna följdes upp dels genom att LCA studien somgenomförts under programskedet uppdaterades med data för den färdigupphandlade byggnaden ochdels genom att interljuva ett urval av aktörer för att få en inblick över hur branschen ser på de ställdakraven. Arbetet innehåller även en avslutande del angående känsligheten i beräkningarna samtosäkerheter och hur de kan behandlas.Byggnaderna som är tänkta att stå i 100 år kommer utsättas för klimatförändringar. Därförgenomfördes parallellt med LCA studien också energisimuleringar för att se hur den termiskakomforten och uppvärmningsbehovet förändras över tiden.Resultaten av LCA-uppföljningen och de ställda kriterierna visar att kraven uppfylldes för både denprefabricerade betongen och den platsgjutna betongen. Att jämföra den totala klimatpåverkan mellanprogramskedet och upphandlad byggnad visar sig inte vara möjligt då konstruktionen har förändratsalltför mycket, bland annat har den uppvärmda ytan ökat med ca 50% samtidigt som mer material haranvänts för de prefabricerade väggarna och bjälklagen. En känslighetsanalys har istället genomförtssom visar att den upphandlade konstruktionen har 30% lägre klimatpåverkan per BOA jämfört motom den byggts med traditionell betong. Hade de ursprungliga konstruktionsdetaljerna frånprogramskedet använts för väggar och bjälklag hade klimatpåverkan istället varit ca 40% lägre.Vid framtida kravställning bör man därför ta hänsyn även till konstruktionerna, betongkvaliteternaoch dess materialmängder och inte bara ställa krav på betongrecepten som i det här fallet.Klimatsimuleringarna visar att det troligen finns ett stort mörkertal med lågenergilägenheter som harförhöjd temperatur inomhus sommartid redan vid dagens klimat

  • 8.
    Kurkinen, Eva-Lotta
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Al-ayish, Nadia
    Brick, Karolina
    Riksbyggen, Sweden.
    Rönneblad, Anders
    Cementa, Sweden.
    Brunklaus, Birgit
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    During, Otto
    RISE - Research Institutes of Sweden, Built Environment, CBI Swedish Cement and Concrete Research Institute.
    Larsson, Oskar
    Lund University, Sweden.
    Resurssnålt byggande: så ställs kraven för minstamöjliga klimatpåverkan: Resultatblad från forskningsprogrammet E2B2 –energieffektivt byggande och boende2018In: Energimyndigheten E2B2Article, book review (Other (popular science, discussion, etc.))
  • 9.
    Reitsma, Lizette
    et al.
    RISE - Research Institutes of Sweden.
    Hayley, Ho
    RISE - Research Institutes of Sweden, ICT, Interactive.
    Brunklaus, Birgit
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Nyström, Sofie
    RISE - Research Institutes of Sweden, ICT, Interactive.
    Brikhan, Wasim
    RISE - Research Institutes of Sweden.
    Schaeffer, Jennie
    Västmanlands läns museum, Sweden.
    Ryöppy, Merja
    University of Southern Denmark, Denmark.
    Larsen, Henry
    University of Southern Denmark, Denmark.
    Strøbech, Elena
    University of Southern Denmark, Denmark.
    Our burden - Carbondioxide theatre for climate action2019In: NORDES 2019: WHO CARES?, Espoo, Finland, 2019, Vol. 8, article id 150Conference paper (Refereed)
    Abstract [en]

    The biggest changes to the planet are made by humankind and action needs to be taken in order to guarantee a sustainable level of emissions for the planet (Rockström et al. 2009). In the project presented in this poster, we engage young citizens (from 15 to 20 years old), in critically reflecting on social norms and practices around climate goals and CO2 emissions, through participatory theatre methods. Only when those involved can get sufficient authority to determine and guide the research and the research agenda, can a project be truly participatory (Winschiers-Theophilus 2009). Participatory theatre offers ways to meet the longing for shared forums by engaging large groups of people in exploring difficult social dilemmas. It can potentially empower the young participants to change their own situations and organisations, as it is “likely to shake things into action or to “unfreeze” blocked situations ” (Shreyögg and Höpfl 2004).

  • 10.
    Røyne, Frida
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Brunklaus, Birgit
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Rex, Emma
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Torén, Johan
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Cintas, Olivia
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Assessment Roadmapfor Emerging Bio-based Technologies: Identifying Sustainability Prospects with Multiple Perspectives2019In: Life cycle Management Conference 2019: Life cycle Management Conference 2019, Poznan, Polen, 2019, Vol. 9Conference paper (Other academic)
    Abstract [en]

    Many bio-based technologies are emerging technologies, with the characteristics of being radical and fast growing. The 2018 Nobel prize in chemistry is based on enzymatic bio-based conversion as a green alterative for several conventional technologies. Overall, the transition to a bio-based economy is seen as a mean to reach sustainability, energy independence and economic growth. Bioeconomy strategies have however also been criticized for focusing too much on economic growth and too little on sustainability. Assessing potential life cycle sustainability risks and benefits early in the development of technologies – when still at lab or pilot scale – provides valuable insights about how to prioritize research activities and to potentially avert unintended consequences. The lack of knowledge and high uncertainty in early development however also makes such assessments challenging. On the social sustainability side, bio-based technologies create new jobs, while the social acceptance can hinder the market growth even in an innovation country like Sweden. Emerging technologies like for example artificial intelligence might reduce jobs and gene therapy in medicine might bear risk for coming future generation. The questions and risks are manifold. Therefore, it is essential to have a roadmap for guidance that takes a holistic approach to sustainability with a life cycle perspective. To add to the complexity, the possibilities for assessment approaches are extensive. Different perspectives can be assessed in numerous ways and with many different methods. The goal of this study is to contribute to a sustainable transition to the bioeconomy, by serving as a roadmap for research and innovation (R&I) on emerging bio-based technologies.

    To suggest a general roadmap for holistic and interdisciplinary assessments, this study identifies, and describes the use of multiple perspective assessments in selected R&I projects on emerging bio-based technologies. The projects include virgin and waste raw materials, biotechnology conversion processes and products such as bio-based chemicals, building materials, soil amendment, and pellets for heat. The findings are, in combination with existing frameworks on biomass- and bio-product prospect models, used to suggest an assessment roadmap for identifying sustainability prospects of emerging bio-based technologies.

    The result consists of an “assessment roadmap” including the perspectives resource-, economic-, environmental-, social- and market potential. Each perspective is accompanied by questions targeted to identify benefits and risks, such as “What valorization routes currently exists, and are under research, for the feedstock?”; “Is the feedstock available, also in the future?”; “Is the production technology socially accepted?”. The roadmap for bio -based emerging technologies also provides advice on the procedure for sustainability assessments, such as organizing an initial workshop with expert knowledge and highlight the importance of scanning before allocating resources for in depth analyses.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9