Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Landel, Pierre
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Linderholt, Andreas
    Linnaeus University, Sweden.
    Johansson, Marie
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Test-analyses comparisons of a stabilizing glulam truss for a tall building2019In: 2nd International Conference on Computational Methods in Wood Mechanics – from Material Properties to Timber Structures. ECCOMAS Thematic Conference, June 17-19, 2019, Växjö, Sweden, 2019Conference paper (Refereed)
  • 2.
    Olsson, Jörgen
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Linderholt, Andreas
    Linnæus University, Sweden.
    Impact evaluation of a thin hybrid wood based joist floor2016In: Proceedings of ISMA 2016: International Conference on Noise and Vibration Engineering, 2016, p. 589-602Conference paper (Refereed)
    Abstract [en]

    The purpose of this paper is twofold. The first aim is to develop a numericalanalysis procedure, by combining FRFs from FE-models with analyticalformulas for sound emission and transmission from the ceiling anddownwards within a room with four walls. The aim is to, by applying thisapproach; accomplish a tool which calculates the relative impact soundbetween different joist floors, in the low frequency range. The second aim is tobenchmark a thin hybrid wooden based joist floor with similar thickness,surface weight and global bending stiffness as a concrete hollow core floorstructure. What will be the difference in sound transmission? The question isrelevant since it may be necessary to make thinner wood based joist floors inhigh rise buildings, if wood should stay competitive against concrete. Theresults show that the direct transmissions of impact sound are very similararound the first bending mode. As the frequency increases, the modes in thestructures differ significantly. Below 100 Hz, the concrete floor has 4 modes,while the hybrid joist floor has 9 modes. As the frequency increases the soundradiation characteristics differs. The results show that it is possible to havesimilar sound transmission properties around the first bending modes for ahybrid based joist floor and a hollow core concrete floor structure with similar thicknesses. At the first modes of the structure, the information about thesurface weight and global bending stiffness are useful for prediction of soundtransmission properties but for higher modes, they are not sufficient.

  • 3.
    Olsson, Jörgen
    et al.
    RISE - Research Institutes of Sweden, Built Environment, Building Technology.
    Linderholt, Andreas
    Linnæus University, Sweden.
    Low Frequency Force to Sound Pressure Transfer Function Measurements Using a Modified Tapping Machine on a Light Weight Wooden Joist Floor2016In: WCTE 2016: World Conference on Timber Engineering, 2016, p. 2888-2895Conference paper (Refereed)
    Abstract [en]

    In recent years research has shown that low frequency impact sound is of significant importance for inhabitants´ perception of impact sound in buildings with light weight wooden joist floors. The tapping machine is well defined as an excitation device and is a standard tool for building acoustics. However, the excitation force spectrum generated for each individual floor is unknown when using a tapping machine. In order to increase the possibilities to compare simulations to impact sound measurements, there is a need for improvement of impact sound measurement methods. By measuring the input force spectrum by a modified tapping machine and the sound in the receiver room, transfer functions can be achieved.In the light weight wooden building used for the evaluation test of the proposed method, structural nonlinearities are evident in the frequency response functions stemming from different excitation levels. This implies that for accurate FRF-measurements in low frequencies, excitation magnitudes that are similar to these stemming from human excitations should preferably be used.

  • 4.
    Olsson, Jörgen
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Bygg och Mekanik.
    Linderholt, Andreas
    Linnaeus University, Sweden.
    Jarnerö, Kirsi
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Bygg och Mekanik.
    Low frequency sound pressure fields in small rooms in wooden buildings with dense and sparse joist floor spacings2015In: Proceedings of the INTER-NOISE 2015 - 44th International Congress on Noise Control Engineering: Implementing Noise Control Technology, 2015, Vol. 1, p. 652-663Conference paper (Refereed)
    Abstract [en]

    Using wood as the main construction material is a potential solution to achieve sustainable buildings. Previous research has shown that frequencies below 50 Hz are of significant importance for the perception of impact sound by residents living in multi-story buildings having light weight wooden frameworks. The standards used for impact sound measurements today are developed for diffuse fields above 50 Hz. For instance due to requirements concerning wall reflections, these methods are not applicable for low frequencies within small rooms. To improve measurement methods, it is important to know the nature of the full sound distribution in small rooms having wooden joist floors. Here, impact sound measurements with microphone arrays are made in two small office rooms having the same dimensions. The rooms represent two extremes in design of joist floors; one with closely spaced wood joists and the other with widely spaced joists. An impact ball is used for excitation the room being measured from the room above. The results show that there are significant variations in the sound pressure, especially in the vertical direction. Here, measurement techniques of impact sound in the low frequency range in small rooms in wooden buildings are evaluated and potential improvements are proposed.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7