Change search
Refine search result
12 1 - 50 of 63
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aspnes, Espen H.
    et al.
    SINTEF, Norway.
    Ausen, Dag
    SINTEF, Norway.
    Høyland, Karin
    SINTEF, Norway.
    Mikalsen, Marius
    SINTEF, Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Schjølberg, Ingrid
    NTNU Norwegian University of Science and Technology, Norway.
    Svagård, Ingrid
    SINTEF, Norway.
    Walderhaug, Ståle
    SINTEF, Norway.
    Velferdsteknologi i boliger: Muligheter og utfordringer2012Report (Other academic)
    Abstract [no]

    Målsettingen med denne rapporten er å belyse og diskutere muligheter og utfordringer med implementering av velferdsteknologi knyttet til boligløsninger og det å klare seg godt i egen bolig. Utvikling og implementering av velferdsteknologi forventes å være et viktig grep for å møte de kommende samfunnsutfordringene med en aldrende befolkning, endret sykdomsbilde og knapphet på helse- og omsorgspersonell.

    Etter å ha presentert nåværende og fremtidige teknologiske muligheter og utfordringer og drøftet disse i forhold til konkrete delmål med implementering av velferdsteknologi i boliger, avsluttes rapporten med å gi noen anbefalinger knyttet til Husbankens ulike roller som pådriver, kompetanseutvikler og kvalitetssikrer.

  • 2.
    Bergstrand, Anna
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Branddynamik.
    Storesund, Karolina
    Brandprovning och certifiering för material och produkter som används inom sjöfarts- och offshoreindustrin2015In: Brandposten, no 52, p. 7-Article in journal (Other academic)
  • 3.
    Fenstad, Jørn
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Almklov, Petter
    NTNU Norwegian University of Science and Technology, Norway.
    Ishol, Herbjørg M.
    SINTEF, Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Albrechtsen, Eirik
    NTNU Norwegian University of Science and Technology, Norway.
    Framtidens brann- og redningsvesen2013Report (Other academic)
    Abstract [no]

    Denne rapporten diskuterer noen scenarier for framtidig organisering av brann‐ og redningsvesenet i Norge. Nåsituasjonen i ulike kommuner og regioner, utviklingstrekk i utfordringer og rammebetingelser og fordeler og ulemper med ulike organisasjonsmodeller diskuteres. Basert på intervjuer og arbeidsmøter med brannsjefer (og andre relevante aktører) trekker rapporten spesielt fram et ønske om større enheter som nødvendig for å møte både dagens utfordringer og framtidige krav til kompetanseutvikling, profesjonalisering og effektivisering. Både informantene og forskergruppen anser det som best om slike modeller etterstrebes med insentiver og icke tvang i utgangspunktet.

  • 4.
    Fjellgaard Mikalsen, Ragni
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sæter Bøe, Andreas
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Glansberg, Karin
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stolen, Reidar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Brandt, Are W.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Energieffektive bygg og brannsikkerhet2019Report (Other academic)
  • 5.
    Försth, Michael
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Post, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Sundström, Björn
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Johansson, Patrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Strömgren, Michael
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Steen-Hansen, Anne
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    STATUS SUMMARY OF CABLE REACTION TO FIRE REGULATIONS IN EUROPE2013In: Proceedings of the 62nd IWCS Conference, International Wire & Cable Symposium, 2013Conference paper (Other academic)
  • 6.
    Försth, Michael
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, material (BRm).
    Post, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Branddynamik.
    Sundström, Björn
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, material (BRm).
    Johansson, Patrik
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, material (BRm).
    Strömgren, Michael
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Steen-Hansen, Anne
    Storesund, Karolina
    Status summary of cable reaction to fire regulations in Europe2013In: Proceedings of the 62nd IWCS Conference, 2013Conference paper (Refereed)
  • 7.
    Gjøsund, Gudveig
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Almkov, Petter Grytten
    NTNU Norwegian University of Science and Technology, Norway.
    Halvorsen, Kristin
    NTNU Norwegian University of Science and Technology, Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Vulnerability and prevention of fatal fires2017In: Proceedings of the 26th European Safety and Reliability Conference, ESREL 2016.2017, Page 309 / [ed] Lesley Walls, Matthew Revie, Tim Bedford, 2017, p. 309-Conference paper (Refereed)
    Abstract [en]

    Fire fatalities statistics in Norway show an overrepresentation of people considered as belonging  to a vulnerable group. Public services are in contact with vulnerable groups through a range of services, including home care and nursing; support services and counselling; and municipal housing. This paper reports the results from a study of municipal practices for the prevention of fatal fire among vulnerable citizens in Norway. The study explores a socio-technical model for fire safety and how collaboration between municipal services might improve fire safety for vulnerable groups.

  • 8.
    Guay, Fanny
    et al.
    DBI Danish Institute of Fire and Security Technology, Denmark.
    Bouffier, Christian
    INERIS Institut National de l’Environnement Industriel et des Risques, France.
    Lange, David
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Mira da Silva, Miguel
    University of Lisbon, Portugal.
    Petersen, Laura
    EMSC European-Mediterranean Seismological Centre, France.
    Reitan, Nina Kristine
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Theocharidou, Marianthi
    European Commission, Italy.
    Supporting disaster risk reduction through better critical infrastructure resilience2017Conference paper (Other academic)
  • 9.
    Ioannou, Ioanna
    et al.
    University College London, UK.
    Aspinall, Willy
    University College London, UK.
    Bouffier, Christian
    INERIS, France.
    Carreira, Elisabete
    INOV, Portugal.
    Honfi, Daniel
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Bygg och Mekanik, Strukturer och Komponenter.
    Lange, David
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Melkunaite, Laura
    DBI, Denmark.
    Reitan, Nina Kristine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Rosetto, Tiziana
    University College London, UK.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Teixeira, Rui
    DAS Divisão de Águas e Saneamento, Portugal.
    IMPROVER D2.1 Methodology for identifying hazard scenarios to assess  the resilience of critical infrastructure2015Report (Other academic)
    Abstract [en]

    Critical infrastructure is exposed to a wide range of hazards, capable to disrupt its operations in various degrees. This raises the question of which hazard scenario an operator shall use to assess the resilience of their critical infrastructure asset. Various techniques aiming to prioritize the various risks are commonly used in the literature. This study proposed an 8-step methodology, which aims to rank the risks of pre-defined hazard scenarios by eliciting the opinions of the stakeholders through a structured expert elicitation technique termed paired comparison. The novelty of the proposed technique is its ability to quantify the degree of disagreement regarding the ranking order of the scenarios and thus to capture the uncertainty associated with these risks.

     

    The proposed methodology has been applied to four living labs, namely: the Oresund region, the port of Oslo, the A31 Highway in France and the potable water network in Barreiro. The applications aims to rank scenarios of natural and operational hazards according to their disaster- and emergency-risk. Despite the small number of participants, the results provide an excellent basis for further discussion regarding the most likely disaster or emergency risk scenarios. For most living labs, the ranking of the hazards using paired comparison was successful in identifying the scenarios associated with the highest risk. Overall, ranking the natural hazards according to their disaster- or emergency-risk has been associated with a higher degree of consensus than the ranking of the operational hazards reflecting on the higher complexity and perhaps the limited understanding of the later.

     

    In more detail, snow storm is the hazard with the highest disaster risk for the A31 Highway. Similarly, earthquake is the hazard with the highest disaster risk for the water network in Barreiro. Three meteorological hazards ranked the highest for both the likelihood to occur and to cause disaster to the Øresund region. By contrast, the ranking of the hazards for the port of Oslo identified several scenarios with similar likelihood to cause disaster, which ranked very different in their likelihood to occur in the next 5 years. This raises question as to whether the most of least likely to occur scenarios is most suitable which can be answered in collaboration with the stakeholders.

     

    With regard to the operational hazards, the contamination of the water in the water source or the distribution network due to an accident at the high-risk industrial SEVECO operations has been identified as the single scenario with the highest risk of disaster for the water network in Barreiro. Three events including a multiple day strike and two accidents in the wet bulk terminal have been identified as having the highest disaster risk for the port of Oslo. By contrast, no operational hazards can be identified as having the highest risk of occurrence for the A31 highway and the Øresund region

  • 10.
    Jansson McNamee, Robert
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Stolen, Reidar
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    The function of intumescent paint for steel during different fire exposures2016Report (Other academic)
    Abstract [en]

    In the present study the behaviour of four intumescent systems for steel was investigated experimentally. The main purpose of the study was to determine the behaviour of the systems during different fire scenarios including standardized furnace testing, tests in cone calorimeter and ad hoc tests including ceiling jets and fire plumes. The experimental campaign shows that two of the investigated systems did perform very poorly in the furnace tests compared to what they were designed for, despite being the systems having the best swelling in the cone calorimeter tests. This highlights the importance of adhesion at high temperature for this type of systems. Since adhesion is crucial a more relevant evaluation for this type of systems ought to be a test where the flows around the specimen can be characterized and controlled, i.e. a ceiling jet or a fire plume scenario. This is especially important as steel protected with intumescent systems are often used in large open spaces where local fire plumes and ceiling jets are expected.Key words: intumescent paint, steel, alternative exposure

  • 11.
    Jansson, Robert
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Stolen, Reidar
    Brandskyddsfärgers funktion vid olika brandscenarier2016In: Brandposten, no 54, p. 37-37Article in journal (Other academic)
  • 12.
    Jansson, Robert
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Stolen, Reidar
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Nordløkken, Per Gunnar
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Intumescent paint systems exposed to different heating scenarios2016In: Interflam 2016: Conference Proceedings, 2016, p. 225-233Conference paper (Other academic)
  • 13.
    Lange, David
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Honfi, Daniel
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Theocharidou, Marianthi
    European Commission Joint Research Centre, Italy.
    Giannopoulos, Georgios
    European Commission Joint Research Centre, Italy.
    Reitan, Nina Kristine
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Incorporation of resilience assessment in critical infrastructure risk assessment frameworks2017In: Safety and Reliability - Theory and Applications - Proceedings of the 27th European Safety and Reliability Conference, ESREL 2017, CRC Press/Balkema , 2017, p. 1031-1038Conference paper (Refereed)
    Abstract [en]

    This paper explores the concept of Critical Infrastructure (CI) resilience and its relationship with current Risk Assessment (RA) processes. It proposes a framework for resilience assessment of CI, which integrates the resilience paradigm into the RA process according to ISO 31000. The framework consists of three levels, namely (a) asset (focus on individual CI assets), (b) system (focus on dependencies between CI assets) and (c) national or regional (focus on societal aspects). It is applicable to individual CI or their combinations, accounting both for existing RA processes, for interdependencies and their effect on interconnected CI, while at the same time employing current, available resilience analysis tools and methodologies. This approach is also compatible with the current European guidelines for national RA applied by the EU Member States. © 2017 Taylor & Francis Group, London.

  • 14.
    Reitan, Nina Kristine
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Bouffier, C.
    INERIS Institut National de l’Environnement Industriel et des Risques, France.
    Durgun, Özüm
    RISE - Research Institutes of Sweden, Built Environment, Energy and Circular Economy.
    Guay, F.
    DBI Danish Institute of Fire and Security Technology, Denmark.
    Ioannou, I.
    University College London, UK.
    Mira da Silva, M.
    University of Lisbon, Portugal.
    Petersen, L.
    EMSC European-Mediterranean Seismological Centre, France.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Theocharidou, M.
    European Commission Joint Research Centre, Italy.
    Vigh, L. G.
    Budapest University of Technology and Economics, Hungary.
    Infrastructures facing disaster risk: Pilot implementation of a new resilience management framework2017Conference paper (Other academic)
  • 15.
    Reitan, Nina Kristine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Rød, Bjarte
    University of Tromsø - The Arctic University of Norway.
    Pursiainen, Christer
    University of Tromsø - The Arctic University of Norway.
    Mira da Silva, Miguel
    INOV.
    Lange, David
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Petersen, Laura
    EMSC.
    Melkunaite, Laura
    DBI.
    Bouffier, Christian
    INERIS.
    IMPROVER D2.3 Evaluation of resilience concepts applied to criticalinfrastructure using existing methodologies2016Report (Refereed)
    Abstract [en]

    The current Deliverable of the IMPROVER H2020 project is the third and last in the project’s Work Package 2. While it draws heavily on previous work and deliverables, it shows the direction for the following workpackages, helping in their task to develop an approach for critical infrastructure (CI) resilience assessment which is applicable across Europe and to different infrastructure sectors as well as being compatible with the EU Risk Assessment guidelines.

     

    The current report combines the work done most notably in Task 2.4 and Task 2.5 as defined in the project’s work plan. These tasks aim to evaluate the contribution of individual resilience concepts to the resilience of critical infrastructure and to compare a number of existing methodologies for implementation of resilience concepts to critical infrastructure.

     

    In short, a set of existing, relevant, resilience analysis or assessment approaches were identified that. Based on well-defined criteria, three of the approaches were selected for more detailed comparison. In Chapter 1, these three approaches are concisely presented and reviewed. In Chapter 2, a set of several individual indicators that are widely used in resilience analysis are selected to be used as ‘test’ indicators to discuss their use vis-à-vis the selected three approaches. Chapter 3 presents four fictional scenarios, based on the projects living labs and representing different sectors of critical infrastructure in different countries. In Chapter 4, the use of the selected set of indicators is illustrated both vis-à-vis the three selected approaches and the four scenarios. Chapter 5 goes deeper in this discussion, and demonstrates how each of the approaches could be used against the four scenarios. Finally, in Chapter 6 the three critical infrastructure resilience analysis or assessment approaches are evaluated and their relative performance compared, identifying their pros and cons based on the author’s experiences from using the methodologies for the illustrations and demonstration. A more detailed, qualitative, comparison of the functioning of the three methodologies against the chosen criteria is also given.

     

    The feedback from illustrations and demonstrations of the three selected methodologies shows that all approaches have pros and cons. Moreover, there seems not to be any strict objective way to evaluate the approaches, but much depends on what one wants to do with a resilience analysis or assessment approach, and how much one is ready put effort and time to it, and who is doing it.

     

    These notions lead to the conclusion that, first, in the subsequent phases the IMPROVER project should aim at combining – in so far it is possible and commensurable – the identified/perceived pros while avoiding the identified/perceived cons. Second, the IMPROVER project should aim at developing a CI resilience assessment approach which can utilise the strengths of the analysis methods shown taking into account the idiosyncrasies of different type of CI and its operators. Such an assessment approach should take the form of a framework that combines a resilience analysis and a resilience evaluation methodology and is compatible with the EU Risk Assessment Guidelines.

  • 16.
    Rød, Bjarte
    et al.
    UiT The Arctic University of Norway, Norway.
    Pursiainen, Christer
    UiT The Arctic University of Norway, Norway.
    Reitan, Nina Kristine
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Lange, David
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Mira da Silva, Miguel
    INOV INESC Inovação, Portugal.
    Evaluation of resilience assessment methodologies2017In: Safety and Reliability - Theory and Applications - Proceedings of the 27th European Safety and Reliability Conference, ESREL 2017, CRC Press/Balkema , 2017, p. 1039-1052Conference paper (Refereed)
    Abstract [en]

    There are a wide range of different frameworks and methodologies for analysing Critical Infrastructure (CI) resilience, covering organisational, technological and social resilience. However, there is a lack of a clear methodology combining these three resilience domains into one framework. The final goal of the ongoing EU-project IMPROVER, ‘Improved risk evaluation and implementation of resilience concepts to Critical Infrastructure,’ is to develop one single improved and easy-to-use critical infrastructure resilience analysis tool which will be applicable within all resilience domains and to all types of critical infrastructure. This article presents part of this work, in which IMPROVER comprehensively evaluated, by demonstration and comparison, a selection of existing resilience methodologies in order to integrate their best features into the new methodology. The selected methodologies were The Benchmark Resilience Tool (BRT) (Lee et al., 2013), Guidelines for Critical Infrastructures Resilience Evaluation (CIRE) (Bertocchi et al., 2016) and the Critical Infrastructure Resilience Index (CIRI). The latter was developed within the consortium (Pursiainen et al., 2017). The results show that it is hard to evaluate and compare the different methodologies considering that the methodologies are not aiming to achieve the same thing. However, this evaluation shows that all the methodologies have pros and cons, and that the IMPROVER project should aim at combining, in so far as is possible and commensurable, the identified pros while avoiding the identified cons into a Critical Infrastructure resilience assessment framework compatible with the current guidelines for risk assessment in the Member States. © 2017 Taylor & Francis Group, London.

  • 17.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Aamnes Mostue, Bodil
    SINTEF, Norway.
    Vurdering av brannvesenet: Kvaliteten i brannvesenets brannforebyggende arbeid2011Report (Other academic)
  • 18.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Meraner, Christoph
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Säter Böe, Andreas
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Utvendig brannbekjempelse i Midtbykvartalet – En mulighetsstudie2019Report (Other academic)
    Abstract [en]

    External fire-fighting in Midtbykvartalet – A feasibility study

    The property developer E. C. Dahls Eiendom (ECDE) plans a building complex in a quarter in the city centre in Trondheim, the "Midtbykvartalet". The building will be enclosed by existing building blocks which to varying degrees hinder the fire service's access and efforts. Also, since the new building is intended for residential purposes, it will be necessary to install windows in fire rated walls against adjacent building. These factors result in deviations from a number of performance requirements in the guidelines to the regulations on technical requirements for construction works and there is therefore a need to find alternative solutions. It must be documented that these alternative solutions have at least as good an effect on fire safety as pre-accepted solutions would have. A potential side-effect of new, alternative solutions is that these can also, to some extent, protect the existing wooden buildings in the quarter.

    The aim of this report has been to identify the state-of-the-art within active fire protection measures for external fire-fighting and to obtain an overview of existing solutions and manufacturers and to carry out an assessment of the potential of these solutions.

    Risk scenarios

    An overview of existing buildings in the Midtbykvartalet is presented as well as an overall description of the plans for development. Based on this, several scenarios have been identified to reveal the potential fire-spread hazard between the existing buildings and the planned building. Furthermore, a qualitative risk assessment has been carried out.

    A literature study describes the state-of-the-art in water-based extinguishing systems for outdoor use. It deals with fixed extinguishers (facade sprinklers, water curtains), dynamic extinguishers, foam extinguishers, fire gels, as well as with sprinkler systems' effect and reliability. Furthermore, existing solutions (e.g. facade sprinklers, water curtains, water cannons and water mist turbines) have been surveyed, existing documentation described and assessed regarding suitability for use in the Midtbykvartalet.

    From the identified scenarios, it appears that fires in existing buildings are more likely to spread to the new building than a fire from the new building to existing buildings. The greatest danger to the new building will be if a fire spreads in existing buildings, up through the roof, through windows or along the facade to the roof. In many cases, the fire service will have good access with their ladder trucks etc. to perform extinguishing efforts, at least in the early phase of the fire. But the risk of rapid internal fire spread, which may include several of the older buildings, can create a challenging situation for the fire service and a risk for the new building. In case of fire spread to the new building, the fire department will, due to the position and height of the building, have difficulty with aerial rescue and evacuation from the new building's higher floors.

    Concept for the Midtbykvartalet

    A combination of a static and a dynamic extinguishing system will provide the best balance between system robustness, extinguishing effect and flexibility for the Midtbykvartalet. Facade sprinklers are considered the most suitable static system solution. Facade sprinklers will primarily cool the facade of the new building and absorb heat radiation from a potential fire in the existing buildings, but will not be suitable for extinguishing or actively fighting a fire within the existing buildings. The design and planning of facade sprinklers shall take the design of windows, balconies and roof terraces into account, which have been identified as vulnerable points in the firewalls.

    Dynamic systems such as water cannons and water mist turbines can be used to cool facades and to actively fight a fire over relatively long distances. In addition, such systems can be established so that the fire service can take over control of the extinguishing system as needed. This property is important, because of the height of the new building and because of how it is surrounded by existing buildings.

    Both water cannons and water mist turbines can be combined with an automatic control that allows you to fight a fire at an early stage, even before the arrival of the fire service, as long as early detection is achieved. A fire that spreads within the existing buildings will not be possible to extinguish with permanently installed dynamic systems. Therefore, the cooling and extinguishing effect of such systems must be evaluated based on the scenario of a large fire in the neighbouring building, which has not been done before.

    The cooling and extinguishing effects for both systems are largely dependent on their control system. The control system must be capable of aiming the water cannon or the water mist turbine at the fire, if required compensating for wind effects and selecting an appropriate water jet mode. Therefore, in order to adapt the control system to the Midtbykvartalet, it is necessary to quantify the cooling and extinguishing effect of such a system in advance and with regard to a potentially large fire in the adjacent existing buildings.

    Selected water mist turbines have the option of operating in a full jet mode, like a water cannon. Therefore, such systems are considered more flexible than water cannons. However, water mist turbines set large amounts of air in motion and generate turbulence that can affect the fire. It is therefore important to investigate if and in which cases this can aggravate the fire and have a negative effect on other areas in the quarter.

  • 19.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analyse av dødsbranner i Norge i perioden 2005 - 20142017Report (Other academic)
    Abstract [no]

    I denne studien er informasjon fra brannstatistikk og andre kilder fra perioden 2005 – 2014 analysert, for å få mer detaljert kunnskap om hvem som omkommer i brann og hvorfor de omkommer. Dermed kan tiltak iverksettes mer målrettet for å redusere antall omkomne.  Følgende spørsmål er forsøkt besvart i studien: 1. Hvilke risikofaktorer forbindes med de som omkommer i branner i Norge? 2. Hva er årsakene til dødsbranner i Norge? 3. Hvordan kan dødsbranner best forebygges?  I den aktuelle perioden er det registrert 517 branner med 571 omkomne. Vi har kartlagt informasjon fra 347 politirapporter, identifisert 387 omkomne og trukket ut informasjon fra pasientjournalene til 248 av de omkomne.

  • 20.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of 985 fire incidents related to oil- and gas production on the Norwegian shelf2018In: Safety and Reliability: Safe Societies in a Changing World / [ed] Stein Haugen, Anne Barros, Coen van Gulijk, Trond Kongsvik, Jan Erik Vinnem, 2018, Vol. 1, p. 1847-1854Conference paper (Refereed)
    Abstract [en]

    Fire is a major threat in the petroleum industry. However, little has been published about the fire related incidents that have occurred in the Norwegian petroleum sector. To gain more knowledge, data from 985 incidents in the 1997 - 2014 period has been analysed. Examples of factors studied are type of facility involved, involved area or system, consequences and severity level. The analysis of the fire incidents reveals that even though many incidents are reported, the large majority of these have not imposed risks for severe fire accidents. It has also provided valuable information regarding possible dangerous situations, commonly in-volved areas, types of equipment as well as types of activity that were involved. Twenty-nine percent of the incidents were false alarms, which must be regarded as a high number in an industry where any production stop could be extremely costly.

  • 21.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of 985 fire incidents related to oil-and gas production on the Norwegian continental shelf2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 1847-1854Conference paper (Refereed)
    Abstract [en]

    Fire is a major threat in the petroleum industry. However, little has been published about the fire related incidents that have occurred in the Norwegian petroleum sector. To gain more knowledge, data from 985 incidents in the 1997–2014 period has been analysed. Examples of factors studied are type of facility involved, involved area or system, consequences and severity level. The analysis of the fire incidents reveals that even though many incidents are reported, the large majority of these have not imposed risks for severe fire accidents. It has also provided valuable information regarding possible dangerous situations, commonly involved areas, types of equipment as well as types of activity that were involved. Twenty-nine percent of the incidents were false alarms, which must be regarded as a high number in an industry where any production stop could be extremely costly.

  • 22.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of fatal fires in Norway in the 2005 – 2014 period2017Report (Other academic)
    Abstract [en]

    In this study, information from fire statistics and other sources has been analyzed to get more detailed knowledge than before about who dies in fires and why. This will help to implement more targeted measures in order to reduce the number of people perishing in fires.  The study attempted to answer the following questions: 1. What risk factors are associated with those who perish in fires in Norway? 2. What are the causes of fatal fires in Norway? 3. How can fatal fires best be prevented?  A total of 517 fires with 571 fatalities are registered in the official fire statistics in the 2005 – 2014 period. We have examined 347 police investigation reports, identified 387 deceased and  extracted information from 248 medical records.

  • 23.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Analysis of fatal fires in Norway over a decade, – A retrospective observational study2018In: Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 2018, p. 2837-2844Conference paper (Refereed)
    Abstract [en]

    Five-hundred-and-seventy-one fatalities were registered in the official fire statistics in Norway between 2005–2014. However, little is known about the victims. This study collected information from several sources to build a holistic database and gain more knowledge about the technical and social aspects of the incidents, forming a basis for more targeted measures. Human behaviour greatly affects the risk of fire, which supports why social aspects of incidents should be considered when identifying risk factors associated with the victims. The results showed a clear distinction between victims above and below the age of 67 with respect to risk factors. For the elderly, reduced mobility, impaired cognitive ability, mental disorders and smoking were observed risk factors. For the younger victims known substance abuse, mental illness, alcoholic influence and smoking were observed, mostly in combination. This shows that fire is a social problem, and should be prevented by initiating customised measures

  • 24.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Evaluation of an industrial building inferno – A case study2019In: Interflam 2019: Conference Proceedings, 2019Conference paper (Refereed)
  • 25.
    Sesseng, Christian
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Wighus, Ragnar
    RISE - Research Institutes of Sweden, ICT, Viktoria.
    Evaluering av brannen i BASA-Huset, Tønsberg2016Report (Refereed)
    Abstract [no]

    Torsdag 23. juli 2015 brøt det ut brann i BASA-Huset i Tønsberg. BASA-Huset var et næringsbygg hvor ca. 70 firma hadde tilhold. Størsteparten av bygget brant ned, og forsikringserstatningene er anslått til å være i størrelsesorden flere hundre millioner kroner. Direktoratet for samfunnssikkerhet og beredskap og Direktoratet for byggkvalitet har bedt SP Fire Research om å evaluere brannen med tanke på hvorfor brannen ble så stor som den ble, og hvilke nasjonale læringspunkt som kan dras ut av hendelsen.

  • 26.
    Steen-Hansen, Anne
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Bøe, Andreas Gagnat
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Hox, Kristian
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Fjellgaard Mikalsen, Ragni
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Stensaas, Jan P.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Evaluation of Fire Spread in the large Lærdal Fire, January 20142015In: Conference proceedings from Fire and Materials 2015, 2015Conference paper (Other academic)
  • 27.
    Steen-Hansen, Anne
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Fjær, Sindre
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Sesseng, Christian
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Contribution to the investigation of the fire in an avalanche cover and train set at Hallingskeid railway station2013In: Conference Proceedings Interflam 2013, Interscience Communications, 2013, p. 1523-1534Conference paper (Other academic)
  • 28.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjær, Sindre
    SINTEF, Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Brann i snøoverbygg på Hallingskeid2012Report (Other academic)
  • 29.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stensaas, Jan Paul
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjær, Sindre
    SINTEF, Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Elektriske kabler og brannrisiko: Branntekniske egenskaper til kabler, ledningssystemer og kapslinger2012Report (Other academic)
  • 30.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Brannsikkerhet for risikogrupper - en kunnskapsstatus2011Report (Other academic)
  • 31.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fire safe furniture without chemical fire retardants2017In: International Fire Protection Magazine, no 70, p. 82-84Article in journal (Refereed)
  • 32.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Recommendations for documentation of  reaction-to-fire properties of materials offshore2017Report (Other academic)
    Abstract [en]

    This report presents a set of recommended reaction-to-fire test methods and related criteria for different construction products and furnishing products for use on offshore petroleum industry facilities.   The principle reaction-to-fire properties that will be critical for fire development are  heat release  smoke production  production of toxic smoke  spread of flames  production of burning droplets/debris.  The test methods presented in this report documents one or several of these properties for a range of different products

  • 33.
    Steen-Hansen, Anne
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Bergstrand, Anna
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Upholstered furniture – Can fire behavior be improved without adding chemical flame retardants?2016In: Interflam 2016: Conference Proceedings, Interscience Communications, 2016, p. 257-268Conference paper (Other academic)
  • 34.
    Steen-Hansen, Anne
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Fjellgaard Mikalsen, Ragni
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Stensaas, Jan P.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Bøe, Andreas Gagnat
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Hox, Kristian
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    The Large Fire in Lærdal, January 2014. How did the Fire Spread and what Restricted the Fire Damage?2015In: Natural Disasters and Societal Safety / [ed] R.H. Gabrielsen & S. Lacasse, Oslo: Novus Forlag, 2015, p. 99-112Chapter in book (Other academic)
  • 35. Steen-Hansen, Anne
    et al.
    Storesund, Karolina
    Försth, Michael
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, material (BRm).
    Strömgren, Michael
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Jensen, Brian V.
    Bluhme, Dan
    Conditions for Nordic harmonisation of fire classification of cables2013Report (Refereed)
  • 36.
    Steen-Hansen, Anne
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Storesund, Karolina
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Hertzberg, Tommy
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research AS, Norge.
    Analysis of fire related incidents in petroleum activities on the Norwegian shelf2016In: Book of Abstracts Nordic Fire & Safety Days 2016, 2016, p. 51-51Conference paper (Other academic)
  • 37.
    Steen-Hansen, Anne
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    Metode for evaluering av branner2015Report (Other academic)
    Abstract [no]

    Denne rapporten beskriver en enkel metode som kan anvendes ved mindre omfattende evalueringer av branner. Med metode menes her en systematikk for gjennomføring av evalueringer. En mindre omfattende evaluering vil være en gjennomgang der det enten er få forhold ved brannen som skal undersøkes, eller der situasjonen er relativt oversiktlig. Metoden er deretter anvendt på en brann i et sykehjem. Evalueringen av denne hendelsen er ikke fullstendig gjennomført, men fungerer som et eksempel på hvordan metoden kan brukes.

  • 38.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Dødsbranner i Norge – Forprosjekt2013Report (Other academic)
  • 39.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    EU Fire Standards and Research2017In: Proceedings of the Furniture Flammability and Human Health Summit, 2017, p. 16-17Conference paper (Refereed)
  • 40.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fire incidents and potential fire incidents on Norwegian oil and gas installations2015Report (Other academic)
    Abstract [en]

    This report presents results from a review of fire incidents and potential fire incidents on installations under the responsibility of the Petroleum Safety Authority Norway (Ptil). The review was an initiative of, and funded by SP Fire Research.

  • 41.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    Optisk varsling – Veiledningstekst2016Report (Refereed)
    Abstract [no]

    Denne rapporten er utarbeidet på oppdrag fra Direktoratet for byggkvalitet (DiBK) og Direktoratet for samfunnssikkerhet og beredskap (DSB). Prosjektet har bakgrunn i at DiBK har mottatt et endringsforslag til eksisterende tekst i VTEK § 11-12, annet ledd annet ledd bokstav a, preaksepterte ytelser punkt 4. Teksten omhandler optisk varsling som en del av et brannalarmanlegg.

  • 42.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Bøe, Andreas G.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Stolen, Reidar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Gjøsund, Gudveig
    NTNU Norwegian University of Science and Technology, Norway.
    Halvorsen, Kristin
    NTNU Norwegian University of Science and Technology, Norway.
    Almklov, Petter G.
    NTNU Norwegian University of Science and Technology, Norway.
    Rett tiltak på rett sted: Forebyggende og målrettede tekniske og organisatoriske tiltak mot dødsbranner i risikogrupper2015Report (Other academic)
    Abstract [no]

    Personer som på ulike måter kan kategoriseres som sårbare, er overrepresentert i dødsbrannstatistikken. Derfor er det viktig å finne fram til effektive og målrettede tiltak som kan forhindre framtidige dødsbranner der personer som tilhører det som omtales som sårbare grupper er involvert. I rapporten brukes en helhetlig analytisk tilnærming som skal fange opp mangfoldet av dimensjoner som kan påvirke forebygging av dødsbrann, og hvordan disse virker i samspill med hverandre. Prosjektet har operert med en forståelse av sårbarhet som inkluderer både det fysiske miljøet, de menneskelige behovene og de sosiale og organisatoriske omgivelsene. En del av rapporten retter seg mot tekniske løsninger som kan brukes for å forbedre brannsikkerheten til sårbare grupper. Det har vært et mål å finne ut hvordan organisatoriske og tekniske tiltak kan brukes og ses i sammenheng, og hvordan tekniske tiltak kan implementeres, vurderes og dokumenteres.

  • 43.
    Storesund, Karolina
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ishol, Herbjörg M.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Rømning i brann: funksjonen til ulike visuelle ledesystemer2014Report (Refereed)
  • 44.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fjellgaard Mikalsen, Ragni
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Evaluating particle and gas transmission through firefighters’ clothing2019In: Interflam 2019: Conference Proceedings, 2019Conference paper (Refereed)
    Abstract [en]

    The goal of this project has been to establish new knowledge and methods for testing the penetration of hazardous soot and smoke particles into fire clothing. The aim has been to provide the basis for the development of new fire-fighter clothing with better protection against particle penetration. In cooperation with fire services, authorities and protection clothing producers, needs, requirements and recommendations have been investigated. For the documentation and relevant classification of protective clothing, test set-ups in small and larger scale have been developed. The aim has been to be able to achieve representative and repeatable fire- and smoke exposure for accurate measurement of the particle penetration into clothing and trough clothing layers for screening materials and design solutions. With regard to the performance of the clothing, the small-scale tests give indications of the textiles’ ability to block gases and particles from penetrating into the clothing. The large-scale tests give indications to how the design of the clothing as a whole is able to prevent intrusion of gases and particles.

  • 45.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Glansberg, Karin
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Smoke alarm efficiency: Waking sleeping occupants2019Report (Other academic)
    Abstract [en]

    A literature survey was conducted to study the available research connected to wakening of sleeping people from the sound of a smoke alarm. The effect on the sound attenuation from typical building materials has also been studied.

    While the common high frequency signal used in residential smoke alarms will wake up most unimpaired adults, is not the most efficient alarm type to awaken certain groups of the population. Children, elderly and people influenced by alcohol or medicines that affect sleep belong to the group at risk of not being awaken by the sound of the common smoke alarm.

    A 520 Hz alarm signal have been shown to efficiently wake up the general population as well as people at risk. This signal has also been shown to maintain its sound level more efficiently when transmitted through and via ordinary building components in dwellings.

    For this reason, it is recommended that product documentation related to the CE-marked smoke alarm should include both minimum sound output (dB(A)) as well as describing the tone (e.g. frequency) in order for the consumer to be able to make an informed choice that fits their needs.

  • 46.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Bøe, Andreas Gagnat
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Wighus, Ragnar
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Slokkevannsmengder2013Report (Other academic)
  • 47.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Hox, Kristian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ishol, Herbjørg M.
    SWECO, Sweden.
    Utredning i forbindelse med brannvesenets dimensjonering2017Report (Other academic)
    Abstract [no]

    Denne rapporten er utarbeidet på oppdrag fra Direktoratet for samfunnssikkerhet og beredskap (DSB). DSB har bedt RISE Fire Research om å bistå med evalueringer i forbindelse med utarbeidelse av forslag til revidert forskrift for organisering og dimensjonering av brann- og redningsvesenet.   Prosjektet har hatt som målsetting å evaluere spesifikke problemstillinger relatert til: 1. Responstid og innsatstid 2. Dimensjonering av beredskap a. Størrelse på samlet innsatsstyrke samt oppmøte b. Vaktberedskap – dagkasernering  3. Dimensjonering av beredskap – vaktlag og støttestyrke med hensyn til såkalt "fremskutt enhet"

  • 48.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ishol, Herbjørg M.
    SINTEF, Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Vurdering av brannvesenet: Kompetanse og opplæring i brannvesenet2012Report (Other academic)
  • 49.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Mai, Thai Trung
    NTNU Norwegian University of Science and Technology, Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Ethanol-fuelled, flue-less fireplaces - An evaluation2010Report (Other academic)
  • 50.
    Storesund, Karolina
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Sesseng, Christian
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Steen-Hansen, Anne
    RISE - Research Institutes of Sweden, Safety and Transport, Fire Research Norway.
    Fire fatalities in Norway: An analysis of 350 fires from 2005 to 20142017Conference paper (Other academic)
12 1 - 50 of 63
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7