Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aldaeus, Fredrik
    et al.
    RISE, Innventia.
    Larsson, Karolina
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Kubat, Mikaela
    RISE, Innventia.
    Karlström, Katarina
    RISE, Innventia.
    Norberg, Lars
    RISE, Innventia.
    Anadolyan, Shant
    RISE, Innventia.
    Peciulyte, Ausra
    Olsson, Lisbeth
    Larsson, Per Tomas
    RISE, Innventia.
    The supramolecular structure of cellulose-rich wood and wheat straw pulps can be a determinative factor for enzymatic hydrolysability2016In: 7th Workshop on cellulose, regenerated cellulose and cellulose derivatives, Örnsköldsvik 15-16 november, 2016, 2016, article id 11Conference paper (Other academic)
  • 2.
    Aldaeus, Fredrik
    et al.
    RISE, Innventia.
    Larsson, Karolina
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Kubat, Mikaela
    RISE, Innventia.
    Karlström, Katarina
    RISE, Innventia.
    Peciulyte, A.
    Olsson, Lars
    RISE, Innventia.
    Larsson, Per Tomas
    RISE, Innventia.
    The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability2015In: CelluloseArticle in journal (Refereed)
  • 3.
    Aldaeus, Fredrik
    et al.
    RISE, Innventia.
    Larsson, Karolina
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Kubat, Mikaela
    RISE, Innventia.
    Karlström, Katarina
    RISE, Innventia.
    Peciulyte, Ausra
    Olsson, Lisbeth
    The influence of various pulp properties on the enzymatic hydrolyzability2014Conference paper (Refereed)
  • 4.
    Aldaeus, Fredrik
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Olsson, Anne-Mari
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Miniaturized determination of ash content in kraft lignin samples using oxidative thermogravimetric analysis2017In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 32, no 2, p. 280-282Article in journal (Refereed)
    Abstract [en]

    A study has been made of several aspects of determination of ash content in kraft lignin samples using thermogravimetric analysis (TGA). Three different methods were used; with the main differences between the methods being that two have a temperature hold at 250 deg C to remove volatiles and that the three methods use different maximum temperatures, namely 525, 550 and 575 deg C, respectively. The three kraft lignins used were produced using the LignoBoost lignin isolation process. It has been demonstrated that the results obtained by the different temperature programmes showed no significant difference. The results were comparable with those from using oven ignition. Moreover, the limit of quantification was several orders of magnitude lower than when using oven ignition. It has been recommended that if TGA is used for determination of ash content, a temperature programme from a standard method should be used, which should be mentioned together with the results. The temperature programme in method one (corresponding to ISO 1762) was the shortest and the preferable method. A well as requiring less labour due to fewer movements in the analytical protocol, the TGA methods enabled a high sample throughput due to autosampling possibilities.

  • 5.
    Aldaeus, Fredrik
    et al.
    RISE, Innventia.
    Olsson, Anne-Mari
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Miniaturized determination of ash content in kraft lignin samples using thermogravimetric analysis2015In: 18th International Symposium on Wood, Fiber and Pulping Chemistry, September 9-11, 2015, Vienna, 2015, p. 352-354Conference paper (Other academic)
    Abstract [en]

    Thermogravimetric analysis (TGA) in oxidative conditions is a promising alternative to ignition in oven for the determination of inorganic residue, commonly referred to as ash. It is here shown that TGA can be used with temperature programs resembling those in standardized methods for oven ignition, and obtainequivalent results even though the sample amount is several orders of magnitude lower. The precision and limit of quantification of TGA is also discussed.

  • 6. Coseri, S.
    et al.
    Biliuta, G.
    Zemlijic, L. F.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Larsson, Per Tomas
    RISE, Innventia.
    Strnad, S.
    Kreze, T.
    Naderi, Ali
    RISE, Innventia.
    Lindström, Tom
    RISE, Innventia.
    Erratum: One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate (RSC Adv. (2015) 5 (85889-85897))2015In: RSC Advances, Vol. 5, no 117Article in journal (Refereed)
  • 7. Coseri, S.
    et al.
    Biliuta, G.
    Zemlijic, L. F.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Larsson, Per Tomas
    RISE, Innventia.
    Strnad, S.
    Kreze, T.
    Naderi, Ali
    RISE, Innventia.
    Lindström, Tom
    RISE, Innventia.
    One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate2015In: RSC Advances, Vol. 5, no 104, p. 85889-85897Article in journal (Refereed)
  • 8.
    Guo, Juan
    et al.
    Chinese Academy of Forestry, China.
    Zhou, Haibin
    Chinese Academy of Forestry, China.
    Stevanic Srndovic, Jasna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Dong, Mengyu
    Chinese Academy of Forestry, China.
    Yu, Min
    Chinese Academy of Forestry, China.
    Salmen, Lennart
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Yin, Yafang
    Chinese Academy of Forestry, China.
    Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction2018In: Wood Science and Technology, ISSN 0043-7719, E-ISSN 1432-5225, Vol. 52, no 1, p. 131-147Article in journal (Refereed)
    Abstract [en]

    An important traditional load bearing member in oriental ancient timber structure buildings, i.e. Huagong (flower arm), was selected to explore the alterations in cell wall components and hygroscopic properties of wood during long time ageing. This archaeological poplar (Populus spp.) wood with cal. BP 690: BP 790 was studied from the wood surface and inwards by means of imaging FTIR spectroscopy, X-ray diffraction and dynamic vapour sorption. The deterioration of the archaeological wood mainly displayed a depolymerization of glucomannan and lignin as well as a hydrolysis of the glucuronic acid of xylan and of the aromatic C–O groups in the condensed lignins or lignin–carbohydrate complexes. Furthermore, the degradation promoted the rearrangement of the cellulose molecules in adjacent microfibrils. The cellulose crystallites in the archaeological wood were therefore packed more tightly and had larger diameter. The structural alterations of wood cell wall components and a decrease in crystallinity contributed to an increase in the number of moisture bonding sites and led to an increase in both the equilibrium moisture content of the archaeological wood in the entire RH range as well as an increase in hysteresis.

  • 9. Mikkonen, K.S.
    et al.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Pirkkalainen, K.
    Liljestrom, V.
    Serimaa, R.
    Salmen, Lennart
    RISE, Innventia.
    Tenkanen, M.
    Microfibrillated cellulose reinforced galactoglucomannan and arabinoxylan films2012Conference paper (Refereed)
  • 10.
    Naderi, Ali
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Larsson, Per Tomas
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Lindström, Tom
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Erlandsson, Johan
    KTH Royal Institute of Technology, Sweden.
    Effect of the size of the charged group on the properties of alkoxylated NFCs2017In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, no 3, p. 1307-1317Article in journal (Refereed)
    Abstract [en]

    The impact of the size of the charged group on the properties of alkoxylated NFC was studied by two chloroalkyl acid reagents. It was found that the employment of the larger 2-chloropropionic acid reagent leads to improved properties, e.g. higher fraction of nano-sized materials, and significantly better redispersion as compared to when the smaller monochloroacetic acid was employed. The differences in the impacts of the different reagents were hypothesized to be due to a more efficient disruption of the cohesion between the nanofibrils when a larger charged group was employed. 

  • 11.
    Peng, Hui
    et al.
    Research Institute of Wood Industry of Chinese Academy of Forestry, China.
    Salmen, Lennart
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Stevanic Srndovic, Jasna
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Lu, Jianxiong
    Research Institute of Wood Industry of Chinese Academy of Forestry, China.
    Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy2019In: Planta, ISSN 0032-0935, E-ISSN 1432-2048Article in journal (Refereed)
    Abstract [en]

    Glucomannan was more strongly oriented, in line with the orientation of cellulose, than the xylan in both compression wood and normal wood of Chinese fir. Lignin in compression wood was somewhat more oriented in the direction of the cellulose microfibrils than in normal wood.

    The structural organization in compression wood (CW) is quite different from that in normal wood (NW). To shed more light on the structural organization of the polymers in plant cell walls, Fourier Transform Infrared (FTIR) microscopy in transmission mode has been used to compare the S2-dominated mean orientation of wood polymers in CW with that in NW from Chinese fir (Cunninghamia lanceolata). Polarized FTIR measurements revealed that in both CW and NW samples, glucomannan and xylan showed a parallel orientation with respect to the cellulose microfibrils. In both wood samples, the glucomannan showed a much greater degree of orientation than the xylan, indicating that the glucomannan has established a stronger interaction with cellulose than xylan. For the lignin, the absorption peak also indicated an orientation along the direction of the cellulose microfibrils, but this orientation was more pronounced in CW than in NW, indicating that the lignin is affected by the orientation of the cellulose microfibrils more strongly in CW than it is in NW.

  • 12.
    Rönnols, Jerk
    et al.
    RISE, Innventia.
    Schweinebarth, Hannah
    RISE, Innventia.
    Jacobs, Anna
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Olsson, Anne -Mari
    RISE, Innventia.
    Reimann, Anders
    RISE, Innventia.
    Aldaeus, Fredrik
    RISE, Innventia.
    Structural changes in softwood kraft lignin during nonoxidative thermal treatment2015In: Nordic Pulp and Paper Research Journal, Vol. 30, no 4, p. 550-561Article in journal (Refereed)
  • 13.
    Rönnols, Jerk
    et al.
    RISE, Innventia.
    Schweinebarth, Hannah
    RISE, Innventia.
    Jacobs, Anna
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Olsson, Anne-Mari
    RISE, Innventia.
    Reimann, Anders
    RISE, Innventia.
    Aldaeus, Fredrik
    RISE, Innventia.
    Structural changes in softwood kraft lignin during thermal treatment2015In: 18th International Symposium on Wood, Fiber and Pulping Chemistry: 18th ISWFPC, 2015, Vol. 2, p. 366-369Conference paper (Other academic)
  • 14.
    Salmen, Lennart
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Stevanic Srndovic, Jasna
    Effect of drying conditions on cellulose microfibril aggregation and "€œhornification"2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 11, p. 6333-6344Article in journal (Refereed)
    Abstract [en]

    Drying of chemical pulps results in a decreased swelling of the fibres, leading to lower density and strength properties of paper sheets. To investigate how variation of pulp pH, drying process temperature, and final moisture content affect this phenomenon, structural studies were performed on a cellulose-rich pulp. Interrupting the drying at moisture contents of around 20%, using drying temperatures of 80 °C and 140 °C, resulted in a more severe degree of hornification than if the pulp was completely dried at the same temperatures. This increased loss of swelling was accompanied by increased cellulose microfibril aggregation. No change of the cellulose microfibril size or of the cellulose crystallinity, as determined by NMR, could be seen. Further, the accessibility of the cellulose microfibril surfaces, including surfaces between microfibrils, was unaffected by the drying. Thus, hornification should not primarily be related to a reduction of accessible cellulosic surfaces.

  • 15.
    Salmen, Lennart
    et al.
    RISE, Innventia.
    Stevanic Srndovic, Jasna
    RISE, Innventia.
    Olsson, Anne-Mari
    RISE, Innventia.
    Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA)2016In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 70, no 12, p. 1155-1163Article in journal (Refereed)
    Abstract [en]

    A deeper insight into the molecular interactions in the highly intermixed structure of the wood cell wall, from the point of view of both basic and applied science, is necessary. In particular, the role of the different matrix materials within the cell wall needs to be better understood, especially concerning how lignin contributes to the mechanical properties. In the present paper, the mechanical properties of spruce wood have been studied on a molecular scale by means of dynamic Fourier transform infrared (FTIR) spectroscopy. To this purpose, native spruce wood was subjected to chemical changes by impregnation and a mild pre-cooking with white liquor with a composition usual for kraft pulping. For comparison, lignin-rich primary cell wall material was also isolated by means of thermomechanical pulp (TMP) refining. Dynamic FTIR spectroscopy revealed that lignin took part in the stress transfer in all investigated samples. This finding is in contrast to literature data. A strong indirect coupling between lignin and cellulose was seen in the primary cell wall (P) material. In case of native wood, the lignin signal was much weaker and also indicated an indirect coupling to cellulose. In the case of pre-cooked wood samples (submitted to mild pulping), the interactions were modified so that the molecular straining of lignin was stronger and more directly related to that of cellulose. In other words, in these samples, lignin played a more active role in the stress transfer as compared to native wood. These findings were supported by a narrower lignin-softening region as measured by dynamic mechanical analysis (DMA). The interpretation is plausible in terms of the superior stiffness seen for high-yield pulps of a similar yield as the studied pre-cooked wood samples.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7