Simple and robust test methodologies that make it possible to measure and quantify the effectiveness of water spray or water mist systems intended for ‘large’ shipboard machinery spaces were investigated. Heat Release Rate calorimetry is usually the best method to measure the effectiveness of a water spray or mist system, although not all fire laboratories have access to such equipment. Therefore, there is a need to explore if other traditional measurement techniques can be used. Such methods include thermocouples, heat flux gages and Plate Thermometers. An additional method, the Pipe Thermometer, has been developed and investigated within the project. It consists of an insulated thin-walled stainless steel tube having an outer diameter of 103 mm with numerous thermocouples welded on the outside surface. The study, which was applied here on a water spray system, shows that the Pipe Thermometer is a possible method to use for evaluation of the efficiency of such system. It is definitely a better method than using heat flux meters or Plate Thermometer which were located at a distance from the fire source. The best correspondence between the measured data below the water spray system and the measured heat release rate was found between the measured gas temperature data and the measured convective heat release data. Consequently, there is no clear advantage of using the Pipe Thermometer (as mounted here) instead of traditional thermocouples at similar locations.
Society is changing ever faster, and tunnels are complex systems where performance is affected by many different stakeholders. These conditions suggest that safety management needs to be proactive and based on a systems perspective that acknowledges socio-technical theories. Although systems thinking principles are foundational in overarching European regulations and goals, system principles generally don’t affect tunnel fire safety design principles or engineering practice. In the countries investigated in this study, tunnel fire safety management (TFSM) builds on experience-based and risk management-based principles that are optimized independently system by system. This is usually done with limited consideration of how these systems are interconnected and affect the overall tunnel system. The purpose of this paper is to investigate how systems thinking could support existing engineering practice. The work presented in this article is the outcome of a collaboration between fire safety researchers and practitioners from five countries and three continents. Through three workshops, current TFSM principles have been compiled and discussed. It is suggested that tunnel safety regulations be redesigned to strengthen the ability of engineers to work in design teams using systems thinking principles.
Tunnel fire safety is a complex problem with no clear solution as yet. Current knowledge of vehicle fire behaviour in tunnels has been established on the basis of a relatively small selection of experimental fire tests, each of which is described. The characteristics of vehicle fires in tunnels are highlighted and issues to be considered when defining ‘design fire for tunnels are discussed. The mechanisms of fire spread in the tunnel environment are presented. The most common fire protection measures used in tunnels are ventilation systems, passive thermal barriers and, increasingly, water spray systems. Each of these three system types are discussed. © Society of Fire Protection Engineers 2016. All rights reserved.
A series of small scale tests was conducted to investigate the influence of sidewall on flame characteristics of heptane pool fires in a channel, considering pool shape (aspect ratio: 1, 2, 4 and 8) and pool orientation relative to sidewall. Distance between fire and sidewall was changed systematically. Both transverse flame development (along the direction of channel width) and longitudinal flame development (along the direction of channel length) were recorded by digital video. Results show that for a fixed fire location, the heat release rate increases with the increasing pool aspect ratio (namely a larger pool perimeter), which indicates more air entrainment and more intense combustion. In wall fire cases, when the long pool rim is perpendicular with channel sidewall, the flame can obtain more air entrainment with a weaker boundary restriction from the sidewall, compared to the case with the long pool rim being parallel with sidewall. Comparison of some previously established correlations based on various experimental conditions with our test results is made. Due to the fact without considering sidewall effect and fuel shape on the air entrainment of fire plume, the classic correlations need to be further improved. Therefore, an integral flame length model considering both sidewall effect and fuel shape is developed, which correlates well with all the data from cases with various pool positions, orientations and aspect ratios. © 2016 The Combustion Institute. Published by Elsevier Inc.
Tests with liquid and solid fuels in model tunnels (1:20) were performed and analysed in order to study the effect of tunnel cross section (width and height) together with ventilation velocity on ceiling gas temperatures and heat fluxes. The model tunnel was 10m long with varying width (0.3m, 0.45m and 0.6m) and height (0.25m and 0.4m). Test results show that the maximum temperature under the ceiling is a weak function of heat release rate (HRR) and ventilation velocity for cases with HRR more than 100MW at full scale. It clearly varies with the tunnel height and is a weak function of the tunnel width. With a lower tunnel height, the ceiling is closer to the base of continuous flame zone and the temperatures become higher. Overall, the gas temperature beneath the ceiling decreases with the increasing tunnel dimensions, and increases with the increasing longitudinal ventilation velocity. The HRR is also an important factor that influences the decay rate of excess gas temperature, and a dimensionless HRR integrating HRR and other two key parameters, tunnel cross-sectional area and distance between fuel centre and tunnel ceiling, was introduced to account for the effect. An equation for the decay rate of excess gas temperature, considering both the tunnel dimensions and HRR, was developed. Moreover, a larger tunnel cross-sectional area will lead to a smaller heat flux.
The report describes different underground systems including mines and tunnels during construction (tunneling). The key factors that affect fire development in underground systems are described. Proposal and recommendations for ventilation strategies in case of fire are given. The report covers both fuel- and ventilation-controlled fires. In general, a minimal ventilation limits the fire growth and may even inert the fire through ascended smoke. A minimal ventilation also contributes to improved conditions for a first fire extinguishing attempt and evacuation.
This paper contains a proposal of new Swedish framework for performance-based design of road tunnel fire safety derived from Swedish and European regulation. The overall purpose of the guideline is to protect life, health, property, environment, and key societal functions from fire. The guideline is structured into five key groups of requirements: #1 Proper management and organisation, #2 to limit the generation and spread of fire and smoke, #3 to provide means for safe self-evacuation, #4 to provide means and safety for the rescue service, and #5 to ensure load-bearing capacity of the construction. Each group contains a hybrid of prescriptive requirements, performance-based requirements, and acceptable solutions. Prescriptive requirements must be fulfilled, however, it is the choice of the design team to either adopt the proposed acceptable solutions, or to design alternative solutions by verifying that performance-based requirements are satisfied. For verification of performance-based requirements through risk analysis the operational, epistemic, and aleatory uncertainties are considerable. Therefore, a scenario-based risk analysis with several specified input variables and methods is recommended for verification of #3 and #5. Indispensable complements are scenario exercises, emergency exercises and similar methods that validate the design and highlight organisational aspects. The proposed design guide has been developed by the authors together with the advisory group established for the work.
The study focuses on the behaviors of spilled liquid from a continuously leaked tank in sloped tunnels. Spillage width and area, which impact the potential heat release rates in case of fire, are investigated under different tunnel slopes and leakage flow rates by numerical simulations using interFoam based on the VOF method in the OpenFOAM toolbox following the validation. The simulation results show that the spillage width initially decreases rapidly and then slowly as the tunnel slope increases. Other parameters, including road surface roughness, physical properties of liquid and leakage source height, are also considered. Empirical models for predicting the spillage width and area are established considering both tunnel slope and leakage flow rate. The results may provide guidance for tunnel safety design and drainage system design affiliated with a tank leakage inside a tunnel. © 2021 The Author(s)
The paper focuses on the flow structures and mass flow rates of thermally driven smoke flows induced by fires in long transportation tunnels under natural ventilation. The important influencing factors including heat release rate (HRR), tunnel width and height, are taken into consideration. The mechanism of the smoke flow movement is explored. The results show that for a fire in a long naturally ventilated transportation tunnel, there exists a critical point which is dependent on HRR and tunnel geometry. This critical point is defined as the location where the smoke layer thickness and the outgoing mass flow rate increase towards it and decrease after it. Further, it is found that the critical point moves farther away from the fire source in a wider or higher tunnel, while it lies closer to the fire source for a higher HRR. A correlation is proposed to estimate the location of the critical point. The outgoing mass flow rates along the tunnel are calculated using the two-layer flow model and well-mixed flow model of thermally driven flows, and the results indicate that these models produce satisfactory predictions of the mass flow rates if the vertical temperature profile is known. © 2023 The Authors
The study focuses on the mass flow rate of the buoyancy-driven gases exhausted from the shaft in naturally ventilated urban road tunnel fires. Theoretical analyses and numerical simulations are performed. The model to predict the mass flow rate of the incoming smoke exhausted by the nearest shaft is developed by considering that the smoke is exhausted along the four sides of the shaft separately. Based on the heat balance between the incoming smoke exhausted and the total gas flow exhausted, the model to estimate the total mass flow rate exhausted from the shaft (both smoke and entrained air) is also established. Meanwhile, a series of numerical simulation in a naturally ventilated tunnel considering the heat release rate (HRR), the shaft height, shaft length and width, shaft location was carried out. The simulation results show that the shaft height has a limited contribution to the mass flow rate of the incoming smoke exhausted while a larger shaft cross-sectional area shows a favorable performance in exhausting the smoke. Further, the air entrainment into the shaft increases with both the shaft height and shaft cross-sectional area. Comparisons of the mass flow rates of the incoming smoke and the total mass flow rates exhausted between simple calculations and simulations are made, showing that the simple models perform well. Further, it is found that there exist two regimes for the total mass flow rate corresponding to different smoke modes in the shaft (complete plug-holing, plug-holing and without plug-holing), which is caused by the different driven forces in the shaft. The outcomes of this work could provide some guidance for the design of vertical shaft and smoke control in naturally ventilated tunnel in urban area.
The paper presents a theoretical study on the ceiling jets induced by small fires in tunnels. The ceiling jet thickness, temperature rise and velocity are analyzed theoretically with Non-Boussinesq approximation. The study focuses on the radial and one-dimensional ceiling jets. Numerical solutions in the radial region and one-dimensional shooting region are obtained and new analytical solutions in the critical flow region are achieved. Analytical solutions indicate that the ceiling jet thickness increases with distance away from the fire source, which largely differs from the existing models implying that the ceiling jet thickness in the one-dimensional critical flow remains constant. Additionally, impacts of the air entrainment, friction and heat transfer on the ceiling jet are analyzed. It is found that in the radial and one-dimensional shooting flow regions, the air entrainment has a much more significant effect than the friction and heat transfer. However, in the one-dimensional critical flow region, the impact of air entrainment seems to be negligible and the flow is dominated by the friction and heat transfer. Further, validation of the present theory is made by comparing with previous theories, semi-empirical models, and experiments. The results show that the present theory provides a good prediction of the ceiling jet properties with natural ventilation for a small fire. © 2020 The Authors
Heat release rates from two full-scale fire experiments with mining vehicles in an underground mine are presented. The mining vehicles involved were a wheel loader and a drilling rig typical for mining operations. The calculated peak heat release rate of the loader was 15.9 MW and occurred after approximately 11 min from ignition. The calculated peak heat release rate of the drilling rig was 29.4 MW and occurred after approximately 21 min from ignition. The heat release rate was calculated from measured data of gas concentrations of oxygen, carbon monoxide and carbon dioxide, measured gas velocity and measured gas temperatures. The fuel load of the wheel loader consisted mainly of the tyres, the hydraulic oil and the diesel fuel. The fuel load of the drilling rig consisted mainly of the hydraulic oil and the hydraulic hoses. The calculated heat release rate curves were controlled by comparing the summed up energy contents of the participating components with the integrated heat release rate curves.
This paper describes simple theoretical calculations of the overall heat release rate (HRR) of multiple objects at both constant and varying distances that have been carried out. The results were compared to both fire experiments in a longitudinal ventilated model tunnel (scale 1:15) using piles of wooden pallets placed at varying distance from each other and with model scale fire experiments (scale 1:4) conducted with piles of wooden pallets in the open. Two different methods are presented which are based on physical relations for fire spread between the piles of wooden pallets. The first method uses a critical heat flux as ignition criteria while the other method uses an ignition temperature. The method using the critical heat flux as ignition criteria shows very good agreement with the corresponding experimental results used. The method using the ignition temperature as ignition criteria did not agree well with the corresponding experimental results. The prerequisite that the burning objects should not necessarily have to be positioned at equal distances was fulfilled. The results can be used to estimate the heat release rate in full scale tunnel experiments where wooden pallets have been used as fuel.
A series of fire tests was carried out to investigate the diffusion flame characteristics of double fires generated from separated burners in a naturally ventilated tunnel, considering different heat release rates and fire separation distances. The results show that the flame tilt angle, as well as the horizontal projected flame length, first increases with fire separation distance and then remains constant, but the vertical flame length first decreases and then remains constant, which is different from two fires in free spaces where flames do not tilt when the separation distance is relatively long. This difference is caused by the non-dimensional fire induced air flow velocity in the tunnel, which is mainly related to the tunnel cross-section dimensions and burner radius. Three regions can be identified, i.e. flame vertical merging, plume vertical merging and non-merging with flame tilted. The critical flame merging separation distance, estimated by the flame merging probability, is greater than that of two fires in an open environment due to the fire-induced air flows. The merging flame height is lower than that of a single fire with a same heat release rate. A correlation was proposed to estimate flame height of two fires in a tunnel by the modified non-dimensional heat release rate using an air entrainment perimeter as the characteristic length. This work enhances the understanding of diffusion flame behaviors of double fires in naturally ventilated tunnels.
The characteristics of fire spread among multiple vehicles in tunnels using longitudinal ventilation were investigated by analyzing the experimental data from a series of fire tests in a 1:15 scale tunnel. Further, a simple theoretical model for gas temperature in a tunnel with multiple fire sources was proposed and used in analysis of the experimental data. The results showed that, for objects (wood piles) placed at a same separating distance downstream of the fire, the fire spread occurred faster and faster along the tunnel. Validation of the simplified temperature model for multiple fire sources was made against both model and full-scale tunnel fire tests. The model was further used to predict the critical conditions for fire spread to the second and third objects. Comparisons with the test data showed that average excess temperature of 465 K (or an equivalent incident heat flux of 18.7 kW/m2) could be used as the criterion for fire spread, and this was verified further by other model-scale tests and full-scale tests. The results showed that the critical fire spread distance monotonously increases with the heat release rate, and decreases with the tunnel perimeter. For multiple fire sources with equivalent heat release rates, as the separation distance between the first two fire sources increases, the critical fire spread distance from the second fire source to the third fire source decreases, but the total fire spread distance from the first fire source to the third one increases. If the total heat release rate at the site of a downstream fire source is greater than that at the former fire source, the critical fire spread distance becomes longer.
The maximum gas temperature below the ceiling is an important parameter for tunnel safety. The present study analyzed the characteristics of the maximum excess ceiling gas temperature driven by double fire sources in a naturally ventilated tunnel. A series of small-scale tunnel fire experiments were carried out with different fire separation distances and heat release rates. Theoretical analysis based on the equivalent virtual origin was also performed. The results showed that there exists only one peak gas temperature when the two fire plumes are merged before reaching the ceiling, while two peak gas temperatures can be observed when the two fire plumes are completely separated. The maximum excess gas temperature below the tunnel ceiling gradually decreases with an increasing fire separation distance in the plume merging region (S < Scp). When the fire separation distance increases further (S > Scp), the effect of the fire separation distance on the maximum gas temperature below the ceiling is very limited. Furthermore, a model using an equivalent fire source was proposed to predict the maximum excess gas temperature below the ceiling, considering different plume merging states. The present study contributes to the understanding of the maximum excess gas temperature characteristics of the smoke flow driven by double fires with an equal heat release rate in naturally ventilated tunnels.
This report describes the fire dynamic conditions in natural ventilated tunnels. A summary of the today’s knowledge about the dynamic fire conditions in nonventilated road or railway tunnel is given. The concept of fire dynamic conditions includes the variation of different parameters in length and height at different ventilation conditions. This primarily applies to parameters such as fire development, heat and smoke gas dispersion, gas temperatures, heat radiation towards objects and surrounding wall construction, flame lengths and sight length and toxic conditions in the smoke gases.