Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gehrmann, Christian
    et al.
    RISE, Swedish ICT, SICS, Security Lab.
    Tiloca, Marco
    RISE, Swedish ICT, SICS, Security Lab.
    Höglund, Rikard
    RISE, Swedish ICT, SICS.
    SMACK: Short Message Authentication ChecK Against Battery Exhaustion in the Internet of Things2015In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2015, 13, p. 274-282, article id 7338326Conference paper (Refereed)
    Abstract [en]

    Internet of Things (IoT) commonly identifies the upcoming network society where all connectable devices will be able to communicate with one another. In addition, IoT devices are supposed to be directly connected to the Internet, and many of them are likely to be battery powered. Hence, they are particularly vulnerable to Denial of Service (DoS) attacks specifically aimed at quickly draining battery and severely reducing device lifetime. In this paper, we propose SMACK, a security service which efficiently identifies invalid messages early after their reception, by checking a short and lightweight Message Authentication Code (MAC). So doing, further useless processing on invalid messages can be avoided, thus reducing the impact of DoS attacks and preserving battery life. In particular, we provide an adaptation of SMACK for the standard Constrained Application Protocol (CoAP). Finally, we experimentally evaluate SMACK performance through our prototype implementation for the resource constrained CC2538 platform. Our results show that SMACK is efficient and affordable in terms of memory requirements, computing time, and energy consumption.

  • 2.
    Höglund, Rikard
    et al.
    RISE, Swedish ICT, SICS.
    Tiloca, Marco
    RISE, Swedish ICT, SICS, Security Lab.
    Current State of the Art in Smart Metering Security2015Report (Other academic)
    Abstract [en]

    Power supply infrastructures are facing radical changes. The introduction of Information and Communication Technologies (ICT) into power grids will allow to automatically monitor and control the power demand and supply. This concept is generally referred to as Smart Grid, and is expected to exponentially grow during the coming years. However, ICT systems are increasingly subject to security cyber attacks, which can have a disruptive impact on the whole power grid, and put people’s safety and business interests at risk. This report covers background information on the smart grid with focus on smart metering in particular. Important aspects such as security and life-cycle management are covered. In addition, the typical smart grid components and communication protocols are surveyed.

  • 3.
    Tiloca, Marco
    et al.
    RISE - Research Institutes of Sweden, ICT, SICS.
    Höglund, Rikard
    RISE - Research Institutes of Sweden, ICT, SICS.
    Al Atiiq, Syafiq
    KTH Royal Institute of Technology, Sweden.
    SARDOS: Self-Adaptive Reaction against Denial of Service in the Internet of Things2018Conference paper (Refereed)
    Abstract [en]

    Denial of Service (DoS) is a common and severe security issue in computer networks. Typical DoS attacks overload servers with bogus requests, induce them to worthlessly commit resources, and even make them unable to serve legitimate clients. This is especially relevant in Internet of Things scenarios, where servers are particularly exposed and often equipped with limited resources. Although most countermeasures focus on detection and mitigation, they do not react to dynamically adapt victims' behavior, while at the same time preserving service availability. This paper presents SARDOS, a reactive security service that leverages detection mechanisms from different communication layers, and adaptively changes the operative behavior of victim servers while preserving service availability. We experimentally evaluated SARDOS with a prototype implementation running on an underclocked Raspberry Pi server. Our results show that, when running SARDOS, a server under attack displays considerably lower memory and CPU usage, while still ensuring (best-effort) fulfillment of legitimate requests.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8