Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aadland, Reidun C.
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Dziuba, Carter J.
    University of Calgary, Canada.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Torsæter, Ole
    NTNU Norwegian University of Science and Technology, Norway.
    Holt, Thorleif
    SINTEF, Norway.
    Gates, Ian D.
    University of Calgary, Canada.
    Bryant, Steven L.
    University of Calgary, Canada.
    Identification of nanocellulose retention characteristics in porous media2018In: Nanomaterials, ISSN 2079-4991, Vol. 8, no 7, article id 547Article in journal (Refereed)
    Abstract [en]

    The application of nanotechnology to the petroleum industry has sparked recent interest in increasing oil recovery, while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees or waste stream from wood and fiber industries. Thus, it is taken from a renewable and sustainable source, and could therefore serve as a good alternative to current Enhanced Oil Recovery (EOR) technologies. However, before nanocellulose can be applied as an EOR technique, further understanding of its transport behavior and retention in porous media is required. The research documented in this paper examines retention mechanisms that occur during nanocellulose transport. In a series of experiments, nanocellulose particles dispersed in brine were injected into sandpacks and Berea sandstone cores. The resulting retention and permeability reduction were measured. The experimental parameters that were varied include sand grain size, nanocellulose type, salinity, and flow rate. Under low salinity conditions, the dominant retention mechanism was adsorption and when salinity was increased, the dominant retention mechanism shifted towards log-jamming. Retention and permeability reduction increased as grain size decreased, which results from increased straining of nanocellulose aggregates. In addition, each type of nanocellulose was found to have significantly different transport properties. Experiments with Berea sandstone cores indicate that some pore volume was inaccessible to the nanocellulose. As a general trend, the larger the size of aggregates in bulk solution, the greater the observed retention and permeability reduction. Salinity was found to be the most important parameter affecting transport. Increased salinity caused additional aggregation, which led to increased straining and filter cake formation. Higher flow rates were found to reduce retention and permeability reduction. Increased velocity was accompanied by an increase in shear, which is believed to promote breakdown of nanocellulose aggregates. © 2018 by the authors.

  • 2.
    Aadland, Reidun
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Jakobsen, Trygve
    NTNU Norwegian University of Science and Technology, Norway.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Long-Sanouiller, Haili
    NTNU Norwegian University of Science and Technology, Norway.
    Simon, Sebastien
    NTNU Norwegian University of Science and Technology, Norway.
    Paso, Kristofer
    NTNU Norwegian University of Science and Technology, Norway.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU Norwegian University of Science and Technology, Norway.
    Torsæter, Ole
    NTNU Norwegian University of Science and Technology, Norway.
    High-temperature core flood investigation of nanocellulose as a green additive for enhanced oil recovery2019In: Nanomaterials, ISSN 2079-4991, Vol. 9, no 5, article id 665Article in journal (Refereed)
    Abstract [en]

    Recent studies have discovered a substantial viscosity increase of aqueous cellulose nanocrystal (CNC) dispersions upon heat aging at temperatures above 90 °C. This distinct change in material properties at very low concentrations in water has been proposed as an active mechanism for enhanced oil recovery (EOR), as highly viscous fluid may improve macroscopic sweep efficiencies and mitigate viscous fingering. A high-temperature (120 °C) core flood experiment was carried out with 1 wt.% CNC in low salinity brine on a 60 cm-long sandstone core outcrop initially saturated with crude oil. A flow rate corresponding to 24 h per pore volume was applied to ensure sufficient viscosification time within the porous media. The total oil recovery was 62.2%, including 1.2% oil being produced during CNC flooding. Creation of local log-jams inside the porous media appears to be the dominant mechanism for additional oil recovery during nano flooding. The permeability was reduced by 89.5% during the core flood, and a thin layer of nanocellulose film was observed at the inlet of the core plug. CNC fluid and core flood effluent was analyzed using atomic force microscopy (AFM), particle size analysis, and shear rheology. The effluent was largely unchanged after passing through the core over a time period of 24 h. After the core outcrop was rinsed, a micro computed tomography (micro-CT) was used to examine heterogeneity of the core. The core was found to be homogeneous. © 2019 by the authors.

  • 3.
    Aaen, Ragnhild
    et al.
    Norwegian University of Science and Technology, Norway.
    Brodin, Fredrik Wernersson
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Simon, Sébastien
    Norwegian University of Science and Technology, Norway.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. Norwegian University of Science and Technology, Norway.
    Oil-in-Water Emulsions Stabilized by Cellulose Nanofibrils-The Effects of Ionic Strength and pH.2019In: Nanomaterials (Basel, Switzerland), ISSN 2079-4991, Vol. 9, no 2, article id E259Article in journal (Refereed)
    Abstract [en]

    Pickering o/w emulsions prepared with 40 wt % rapeseed oil were stabilized with the use of low charged enzymatically treated cellulose nanofibrils (CNFs) and highly charged 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs. The emulsion-forming abilities and storage stability of the two qualities were tested in the presence of NaCl and acetic acid, at concentrations relevant to food applications. Food emulsions may be an important future application area for CNFs due to their availability and excellent viscosifying abilities. The emulsion characterization was carried out by visual inspection, light microscopy, viscosity measurements, dynamic light scattering and mild centrifugation, which showed that stable emulsions could be obtained for both CNF qualities in the absence of salt and acid. In addition, the enzymatically stabilized CNFs were able to stabilize emulsions in the presence of acid and NaCl, with little change in the appearance or droplet size distribution over one month of storage at room temperature. The work showed that enzymatically treated CNFs could be suitable for use in food systems where NaCl and acid are present, while the more highly charged TEMPO-CNFs might be more suited for other applications, where they can contribute to a high emulsion viscosity even at low concentrations.

  • 4.
    Aarstad, Olav
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Pedersen, Ina Sander
    NTNU Norwegian University of Science and Technology, Norway.
    Björnöy, Sindre H.
    NTNU Norwegian University of Science and Technology, Norway.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Strand, Berit L.
    NTNU Norwegian University of Science and Technology, Norway.
    Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils2017In: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 9, no 8, article id 378Article in journal (Refereed)
    Abstract [en]

    Alginate and cellulose nanofibrils (CNF) are attractive materials for tissue engineering and regenerative medicine. CNF gels are generally weaker and more brittle than alginate gels, while alginate gels are elastic and have high rupture strength. Alginate properties depend on their guluronan and mannuronan content and their sequence pattern and molecular weight. Likewise, CNF exists in various qualities with properties depending on, e.g., morphology and charge density. In this study combinations of three types of alginate with different composition and two types of CNF with different charge and degree of fibrillation have been studied. Assessments of the composite gels revealed that attractive properties like high rupture strength, high compressibility, high gel rigidity at small deformations (Young’s modulus), and low syneresis was obtained compared to the pure gels. The effects varied with relative amounts of CNF and alginate, alginate type, and CNF quality. The largest effects were obtained by combining oxidized CNF with the alginates. Hence, by combining the two biopolymers in composite gels, it is possible to tune the rupture strength, Young’s modulus, syneresis, as well as stability in physiological saline solution, which are all important properties for the use as scaffolds in tissue engineering.

  • 5.
    Campodoni, Elisabetta
    et al.
    Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Italy.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Rashad, Ahmad
    University of Bergen, Norway.
    Ramírez-Rodríguez, Gloria B.
    Universidad de Granada, Spain.
    Mustafa, Kamal
    University of Bergen, Norway.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. Norwegian University of Science and Technology, Norway.
    Tampieri, Anna
    Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Italy.
    Sandri, Monica
    Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Italy.
    Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils2019In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 94, p. 867-878Article in journal (Refereed)
    Abstract [en]

    Biopolymers such as gelatin (Gel) and cellulose nanofibrils (CNF) have many of the essential requirements for being used as scaffolding materials in tissue regeneration; biocompatibility, surface chemistry, ability to generate homogeneous hydrogels and 3D structures with suitable pore size and interconnection, which allows cell colonization and proliferation. The purpose of this study was to investigate whether the mechanical behaviour of the Gel matrix can be improved by means of functionalization with cellulose nanofibrils and proper cross-linking treatments. Blending processes were developed to achieve a polymer nanocomposite incorporating the best features of both biopolymers: biomimicry of the Gel and structural reinforcement by the CNF. The designed 3D structures underline interconnected porosity achieved by freeze-drying process, improved mechanical properties and chemical stability that are tailored by CNF addition and different cross-linking approaches. In vitro evaluations reveal the preservation of the biocompatibility of Gel and its good interaction with cells by promoting cell colonization and proliferation. The results support the addition of cellulose nanofibrils to improve the mechanical behaviour of 3D porous structures suitable as scaffolding for tissue regeneration.

  • 6.
    Cernencu, Alexandra
    et al.
    University Politehnica of Bucharest, Romania.
    Lungu, Adriana
    University Politehnica of Bucharest, Romania.
    Stancu, Izabela
    University Politehnica of Bucharest, Romania.
    Serafim, Andrada
    University Politehnica of Bucharest, Romania.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Iovu, Horia
    University Politehnica of Bucharest, Romania; Academy of Romanian Scientists, Romania.
    Bioinspired 3D printable pectin-nanocellulose ink formulations2019In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 220, p. 12-21Article in journal (Refereed)
    Abstract [en]

    The assessment of several ink formulations for 3D printing based on two natural macromolecular compounds is presented. In the current research we have exploited the fast crosslinking potential of pectin and the remarkable shear-thinning properties of carboxylated cellulose nanofibrils, which is known to induce a desired viscoelastic behavior. Prior to 3D printing, the viscoelastic properties of the polysaccharide inks were evaluated by rheological measurements and injectability tests. The reliance of the printing parameters on the ink composition was established through one-dimensional lines printing, the base units of 3D-structures. The performance of the 3D-printed structures after ionic cross-linking was evaluated in terms of mechanical properties and rehydration behavior. MicroCT was also used to evaluate the morphology of the 3D-printed objects regarding the effect of pectin/nanocellulose ratio on the geometrical features of scaffolds. The proportionality between the two polymers proved to be the determining factor for the firmness and strength of the printed objects. © 2019

  • 7.
    Courtade, Gaston
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Forsberg, Zarah
    NMBU Norwegian University of Life Sciences, Norway.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Eijsink, Vincent G H
    NMBU Norwegian University of Life Sciences, Norway.
    Aachmann, Finn L
    NTNU Norwegian University of Science and Technology, Norway.
    The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation2018In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 293, no 34, p. 13006-13015Article in journal (Refereed)
    Abstract [en]

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of polysaccharides such as cellulose and chitin, a feature that makes them key tools in industrial biomass conversion processes. The catalytic domains of a considerable fraction of LPMOs and other carbohydrate-active enzymes (CAZymes) are tethered to carbohydrate-binding modules (CBMs) by flexible linkers. These linkers preclude X-ray crystallographic studies, and the functional implications of these modular assemblies remain partly unknown. Here, we used NMR spectroscopy to characterize structural and dynamic features of full-length modular ScLPMO10C from Streptomyces coelicolor We observed that the linker is disordered and extended, creating distance between the CBM and the catalytic domain and allowing these domains to move independently of each other. Functional studies with cellulose nanofibrils revealed that most of the substrate-binding affinity of full-length ScLPMO10C resides in the CBM. Comparison of the catalytic performance of full-length ScLPMO10C and its isolated catalytic domain revealed that the CBM is beneficial for LPMO activity at lower substrate concentrations and promotes localized and repeated oxidation of the substrate. Taken together, these results provide a mechanistic basis for understanding the interplay between catalytic domains linked to CBMs in LPMOs and CAZymes in general.

  • 8.
    Heggset, Ellinor B
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Chinga-Carrasco, Gary
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU Norwegian University of Science and Technology, Norway.
    Temperature stability of nanocellulose dispersions2017In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 157, p. 114-121Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibrils (CNF) have potential as rheology modifiers of water based fluids, e.g. drilling fluids for use in oil wells or as additives in injection water for enhanced oil recovery (EOR). The temperature in oil wells can be high (>100 °C), and the retention time long; days for drilling fluids and months for EOR fluids. Hence, it is important to assess the temperature stability over time of nanocellulose dispersions to clarify their suitability as rheology modifiers of water based fluids at such harsh conditions. Dispersions of CNF produced mechanically, by using TEMPO mediated oxidation and by using carboxymethylation as pretreatment, in addition to cellulose nanocrystals (CNC), have been subjected to heat aging. Temperature stability was best for CNC and for mechanically produced CNF that were stable after heating to 140 °C for three days. The effect of additives was evaluated; cesium formate and sodium formate increased the temperature stability of the dispersions, while there was no effect of using phosphate buffer.

  • 9.
    Heggset, Ellinor B
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Strand, Berit L.
    NTNU Norwegian University of Science and Technology, Norway.
    Sundby, Kristin W.
    Borregaard, Norway.
    Simon, Sebastien
    NTNU Norwegian University of Science and Technology, Norway.
    Chinga-Carrasco, Gary
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU Norwegian University of Science and Technology, Norway.
    Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, no 1, p. 581-595Article in journal (Refereed)
    Abstract [en]

    Inks for 3D printing based on cellulose nanofibrils (CNFs) or mixtures of CNFs and either cellulose nanocrystals (CNCs) or alginate were assessed by determining their viscoelastic properties i.e. complex viscosity and storage and loss moduli (G′ and G″). Two types of alginates were used, i.e. from Laminaria hyperborea stipe and Macrocystis pyrifera. Shape fidelity of 3D printed grids were qualitatively evaluated and compared to the viscoelastic properties of the inks. The biocomposite gels containing alginate were post stabilized by crosslinking with Ca2+. Mechanical properties of the crosslinked biocomposite gels were assessed. The complex viscosity, G′ and G″ of CNF suspensions increased when the solid content was increased from 3.5 to 4.0 wt%, but levelled off by further increase in CNF solid content. The complex viscosity at low angular frequency at 4 wt% was as high as 104 Pa·s. This seemed to be the necessary viscosity level for obtaining good shape fidelity of the printed structures for the studied systems. By replacing part of the CNFs with CNCs, the complex viscosity, G′ and G″ were reduced and so was also the shape fidelity of the printed grids. The changes in complex viscosity and moduli when CNFs was replaced with alginate depended on the relative amounts of CNFs/alginate. The type of alginate (from either L. hyp. stipe or M. pyr.) did not play a role for the viscoelastic properties of the inks, nor for the printed grids before post stabilization. Replacing CNFs with up to 1.5 wt% alginate gave satisfactory shape fidelity. The effect of adding alginate and subsequent crosslinking with Ca2+, strongly affected the strength properties of the gels. By appropriate choice of relative amounts of CNFs and alginate and type of alginate, the Young’s modulus and rupture strength could be controlled within the range of 30–150 kPa and 1.5–6 kg, respectively. The deformation at rupture was around 55%. The alginate from L. hyp. stipe yields higher Young’s modulus and lower syneresis compared to M. pyr. This shows that the choice of alginate plays a significant role for the mechanical properties of the final product, although it does not influence on the viscoelastic properties of the ink. The choice of alginate should be L. hyp. stipe if high strength is desired.

  • 10. Heggset, Ellinor B
    et al.
    Syverud, Kristin
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Øyaas, Karin
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Novel pretreatment pathways for dissolution of lignocellulosic biomass based on ionic liquid and low temperature alkaline treatment2016In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 93, p. 194-200Article in journal (Refereed)
    Abstract [en]

    Pretreatment, fractionation and hydrolysis remains costly and challenging process steps in biochemical conversion of softwoods. Here, ionic liquid pretreatment using 1-ethyl-3-methylimidazolium acetate (EMIM-OAc) at high temperature (100 °C, 6 h) and alkali based (NaOH/urea) pretreatment at sub-zero temperature (−18 °C, 24 h) were compared and combined in studies of Norway Spruce biomass deconstruction. Both treatments significantly improved the enzymatic digestibility of the biomass. EMIM-OAc gave higher glucan than mannan digestibility, indicating a more pronounced effect on the cellulose polymer than on the hemicellulose polymer. In contrast, low temperature alkali pretreatment using NaOH or NaOH + urea gave a more pronounced effect on mannan than on glucan digestibility. By combining the two methods the total monosugar yield after enzymatic hydrolysis was improved by 20–50% as compared to using ionic liquid or alkali based pretreatment alone. Lignin dissolution was low for both methods under the conditions studied.

  • 11.
    Jakobsen, Trygve Dagsloth
    et al.
    NTNU Norwegian University of Science and Technology, Norway.
    Simon, Sebastien
    NTNU Norwegian University of Science and Technology, Norway.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU Norwegian University of Science and Technology, Norway.
    Paso, Kristofer
    NTNU Norwegian University of Science and Technology, Norway.
    Interactions between surfactants and cellulose nanofibrils for enhanced oil recovery2018In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 57, no 46, p. 15749-15758Article in journal (Refereed)
    Abstract [en]

    Chemical enhanced oil recovery (EOR) represents a series of potential solutions for extracting more oil from resources with already known locations and magnitudes. Unfortunately, many of the chemical additives in use today are not environmentally friendly. In the study a "greener" alternative for increasing viscosity of the injection water is investigated, namely cellulose nanofibrils (CNF). The nanofibrils are combined in systems with anionic sulfonate surfactants, SDBS and AOT, in order to decrease interfacial tension (IFT) between oil and water. In combination, the increase of water viscosity and decrease of IFT should result in higher ultimate oil recovery than if only conventional water flooding was applied. Interactions between cellulose nanofibrils and the surfactants have been investigated through adsorption studies, rheology, and IFT measurements. An observed synergy effect between CNF and surfactants upon viscosity of injection water, as well as with substantial decrease in IFT, leads the authors to the conclusion that an EOR system consisting of CNF and sulfonate surfactants has good potential for future applications.

  • 12.
    Rashad, Ahmad
    et al.
    University of Bergen, Norway.
    Mohamed-Ahmed, Samih
    University of Bergen, Norway.
    Ojansivu, Miina
    University of Bergen, Norway; University of Tampere, Finland.
    Berstad, Kaia
    University of Bergen, Norway.
    Yassin, Mohammad
    University of Bergen, Norway.
    Kivijärvi, Tove
    KTH Royal Institute of Technology, Sweden.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU Norwegian University of Science and Technology, Norway.
    Mustafa, Kamal
    University of Bergen, Norway.
    Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells2018In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 11, p. 4307-4319Article in journal (Refereed)
    Abstract [en]

    3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase release assays confirmed that CNF did not inhibit cellular viability. The CNF between the 3D printed PCL strands and pores acted as a hydrophilic barrier, enhancing cell seeding efficiency, and proliferation. CNF supported the formation of a well-organized actin cytoskeleton and cellular production of vinculin protein on the surfaces of TCP and PCL scaffolds. Moreover, CNF-coated surfaces enhanced not only alkaline phosphatase activity, but also collagen Type-I and mineral formation. It is concluded that CNF coating enhances cell attachment, proliferation, and osteogenic differentiation and has the potential to improve the performance of 3D printed PCL scaffolds for bone tissue engineering.

  • 13.
    Rashad, Amad
    et al.
    University of Bergen, Norway.
    Mustafa, Kamal
    University of Bergen, Norway.
    Heggset, Ellinor B
    RISE - Research Institutes of Sweden, Bioeconomy, PFI.
    Syverud, Kristin
    RISE - Research Institutes of Sweden, Bioeconomy, PFI. NTNU Norwegian University of Science and Technology, Norway.
    Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry2017In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, no 4, p. 1238-1248Article in journal (Refereed)
    Abstract [en]

    The current study aims to demonstrate the influence of the surface chemistry of wood-derived cellulose nanofibril (CNF) hydrogels on fibroblasts for tissue engineering applications. TEMPO-mediated oxidation or carboxymethylation pretreatments were employed to produce hydrogels with different surface chemistry. This study demonstrates the following: first, the gelation of CNF with cell culture medium and formation of stable hydrogels with improved rheological properties; second, the response of mouse fibroblasts cultured on the surface of the hydrogels or sandwiched within the materials with respect to cytotoxicity, cell attachment, proliferation, morphology, and migration. Indirect cytotoxicity tests showed no toxic effect of either hydrogel. The direct contact with the carboxymethylated hydrogel adversely influenced the morphology of the cells and limited their spreading, while typical morphology and spreading of cells were observed with the TEMPO-oxidized hydrogel. The porous fibrous structure may be a key to cell proliferation and migration in the hydrogels.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7