Change search
Refine search result
1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ail, Ujwala
    et al.
    Linköpings Universitet, Sweden.
    Khan, Zia Ullah
    Linköpings Universitet, Sweden.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Berthold, Fredrik
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Parasuraman, Rajasekar
    Indian Institute of Science, India.
    Umarji, Arun M.
    Indian Institute of Science, India.
    Slettengren, Kerstin
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Pettersson, Henrik
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Crispin, Xavier
    Linköpings Universitet, Sweden.
    Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications2017In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 225, p. 55-63Article in journal (Refereed)
    Abstract [en]

    Organic polymer thermoelectrics (TE) as well as transition metal (TM) silicides are two thermoelectric class of materials of interest because they are composed of atomic elements of high abundance; which is a prerequisite for mass implementation of thermoelectric (TE) solutions for solar and waste heat recovery. But both materials have drawbacks when it comes to finding low-cost manufacturing. The metal silicide needs high temperature (>1000 °C) for creating TE legs in a device from solid powder, but it is easy to achieve long TE legs in this case. On the contrary, organic TEs are synthesized at low temperature from solution. However, it is difficult to form long legs or thick films because of their low solubility. In this work, we propose a novel method for the room temperature synthesis of TE composite containing the microparticles of chromium disilicide; CrSi2 (inorganic filler) in an organic matrix of nanofibrillated cellulose- poly(3,4-ethyelenedioxythiophene)-polystyrene sulfonate (NFC-PEDOT:PSS). With this method, it is easy to create long TE legs in a room temperature process. The originality of the approach is the use of conducting polymer aerogel microparticles mixed with CrSi2 microparticles to obtain a composite solid at room temperature under pressure. We foresee that the method can be scaled up to fabricate and pattern TE modules. The composite has an electrical conductivity (σ) of 5.4 ± 0.5 S/cm and the Seebeck coefficient (α) of 88 ± 9 ΌV/K, power factor (α2σ) of 4 ± 1 ΌWm−1K−2 at room temperature. At a temperature difference of 32 °C, the output power/unit area drawn across the load, with the resistance same as the internal resistance of the device is 0.6 ± 0.1 ΌW/cm2.

  • 2.
    Edberg, Jesper
    et al.
    RISE - Research Institutes of Sweden, ICT, Acreo. Linköping University, Sweden.
    Brooke, Robert
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Engquist, Isak
    Linköping University, Sweden; Wallenberg Wood Science Center, Sweden.
    Berggren, Magnus
    Linköping University, Sweden; Wallenberg Wood Science Center, Sweden.
    Improving the Performance of Paper Supercapacitors Using Redox Molecules from Plants2019In: Advanced Sustainable SystemsArticle in journal (Refereed)
    Abstract [en]

    A supercapacitor made from organic and nature‐based materials, such as conductive polymers (PEDOT:PSS), nanocellulose, and an the organic dye molecule (alizarin), is demonstrated. The dye molecule, which historically was extracted from the roots of the plant rubia tinctorum, is here responsible for the improvement in energy storage capacity, while the conductive polymer provides bulk charge transport within the composite electrode. The forest‐based nanocellulose component provides a mechanically strong and nonporous network onto which the conductive polymer self‐organizes. The electrical and electrochemical properties of the material composition are investigated and prototype redox‐enhanced supercapacitor devices with excellent specific capacitance exceeding 400 F g−1 and an operational stability over >1000 cycles are demonstrated. This new class of supercapacitors, which in part are based on organic materials from plants, represents an important step toward a green and sustainable energy technology.

  • 3.
    Edberg, Jesper
    et al.
    Linköping university, Sweden.
    Malti, Abdellah
    Linköping university, Sweden.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy.
    Hamedi, Mahiar M
    KTH Royal Institute of Technology, Sweden.
    Crispin, Xavier
    Linköping university, Sweden.
    Engquist, Isak
    Linköping university, Sweden.
    Berggren, Magnus
    Linköping university, Sweden.
    Electrochemical circuits from ’cut and stick’ PEDOT:PSS-nanocellulose composite2017In: Flexible and Printed Electronics, Vol. 2, no 4, article id 045010Article in journal (Refereed)
    Abstract [en]

    Wereport a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics (an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm-1). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. Wealso demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification.Wehave further used these devices to construct digital circuits such as NOT, NANDandNORlogic.

  • 4. Eita, M.
    et al.
    Arwin, H.
    Granberg, Hjalmar
    RISE, Innventia.
    Wågberg, L.
    Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films2011In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, no 2, p. 566-572Article in journal (Refereed)
  • 5.
    Erlandsson, Johan
    et al.
    KTH Royal Institute of Technology, Sweden.
    Françon, Hugo
    KTH Royal Institute of Technology, Sweden.
    Marais, Andrew
    KTH Royal Institute of Technology, Sweden.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils.2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 728-737Article in journal (Refereed)
    Abstract [en]

    Chemically cross-linked highly porous nanocellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 μm thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

  • 6.
    Erlandsson, Johan
    et al.
    KTH Royal Institute of Technology, Sweden.
    Lopez Duran, Verónica
    KTH Royal Institute of Technology, Sweden.
    Granberg, Hjalmar
    RISE, Innventia.
    Sandberg, Mats
    RISE, Swedish ICT, Acreo.
    Larsson, Per A.
    KTH Royal Institute of Technology, Sweden.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Macro- and mesoporous nanocellulose beads for use in energy storage devices2016In: Applied Materials Today, ISSN 2352-9407, Vol. 5, p. 246-254Article in journal (Refereed)
    Abstract [en]

    Chemically cross-linked, wet-stable cellulose nanofibril (CNF) aerogel beads were fabricated using a novel procedure. The procedure facilitated controlled production of millimetre-sized CNF aerogel beads without freeze-drying or critical point drying, while still retaining a highly porous structure with low density. The aerogel beads were mechanically robust in the dry state, supporting loads of 1.3 N at 70% compression, even after being soaked in water and re-dried. Furthermore, they displayed both a good stability in water and a remarkably good shape recovery after wet compression. Owing to the stability in water, the entire surface of the highly porous aerogel beads could be successfully functionalized with polyelectrolytes and carboxyl-functionalized single-wall carbon nanotubes (CF-SWCNTs) using the Layer-by-Layer technique, introducing a significant electrical conductivity (1.6 mS/cm) to the aerogel beads. The functionalized, electrically conducting aerogel beads could carry as much as 2 kA/cm2 and act as electrodes in a supercapacitor displaying a stabilized charge storage capacity of 9.8 F/g after 50 charging–discharging cycles.

  • 7.
    Erlandsson, Johan
    et al.
    KTH Royal institute of technology, sweden.
    Pettersson, Torbjörn
    KTH Royal institute of technology, Sweden.
    Ingverud, Tobias
    KTH Royal institute of technology, Sweden.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy.
    Larsson, Per A.
    KTH Royal institute of technology, Sweden.
    Malkoch, Michael
    KTH Royal institute of technology, Sweden.
    Wågberg, Lars
    KTH Royal institute of technology, Sweden.
    On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 40, p. 19371-19380Article in journal (Refereed)
    Abstract [en]

    The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

  • 8.
    Granberg, Hjalmar
    et al.
    RISE, Innventia.
    Béland, Marie-Claude
    RISE, Innventia.
    Lindberg, Siv M.
    RISE, Innventia.
    Berthold, Fredrik
    RISE, Innventia.
    Vomhoff, Hannes
    RISE, Innventia.
    Wickholm, Kristina
    RISE, Innventia.
    Lindström, Mikael
    RISE, Innventia.
    It’s a bird! It’s a plane! It’s a super multimaterial!2015In: Paper Conference and Trade Show (PaperCon 2015), TAPPI Press, 2015, Vol. 1, p. 492-504Conference paper (Refereed)
    Abstract [en]

    Matching market demands and technological solutions is not always straightforward. In this article, we report on one material, a cellulose-PLA multimaterial, which was made on a full-scale pilot paper machine and adapted to five different market applications having specialized and often conflicting demands. The material can be injection molded, 3D-printed, hot pressed, treated as a textile, used in a laminate, or converted as a paper board, giving it a wide range of possible properties depending on how it is processed.The five application areas presented here were identified as gaps in the marketplace where seemingly conflicting needs were desired: opacity and transparency; compact for transport but having an expanded size during use; stiffness and flexibility; strength and light-weight; and durability and degradability. These properties are exemplified in a number of material and product demonstrators, illustrating how tailored solutions can give products with distinctly different personalities. The material can be made flexible and given movement as graceful as the wing of a bird or be processed to be strong and light-weight enough to be used in vehicles like airplanes. By having one material that is produced on a large scale, but then processed according to specific market demands and expectations, the gap between needing scale and needing scope is bridged.

  • 9.
    Granberg, Hjalmar
    et al.
    RISE, Innventia.
    Coppel, L.G.
    RISE, Innventia.
    Eita, M.
    De, Mayolo E.A.
    Arwin, H.
    Wågberg, L.
    Dynamics of moisture interaction with polyelectrolyte multilayers containing nanofibrillated cellulose2012In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, no 2, p. 496-499Article in journal (Refereed)
  • 10.
    Granberg, Hjalmar
    et al.
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Sandberg, Mats
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Håkansson, Karl
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Pilot scale production of interactive zinc oxide paper and its multiple applicability2019In: PaperCon 2019: Proceedings, TAPPI Press, 2019, article id PF3.3Conference paper (Other academic)
    Abstract [en]

    A study has been made of the production of zinc oxide (ZnO) paper in a pilot paper machine. Bleached sulphate softwood pulp (70%) and bleached sulphate hardwood pulp (30%) were corefined. Cationic polyacrylamide (CPAM) was used as retention agent, while alkyl ketene dimer (AKD) was used as sizing agent for some samples. Some papers were screen printed with a conducting carbon-based ink to produce a photosensor device. Two methods were used to study the photocatalysis: immersing ZnO papers into kongo red dispersions or resazurin (Rz) based photocatalyst activity indicator ink and exposing the papers to ultraviolet (UV) light in a sunlight simulator. ZnO papers of approximately 60gsm were successfully produced on the pilot scale machine, which was run at a low speed (100m/min) and the retention of ZnO particles was good in all samples. The paper looked like an ordinary white printing paper product, but was a truly interactive material, exhibiting photoconductivity and enabling use as an excellent photosensor.

  • 11.
    Gwinnutt, J.
    et al.
    International Newsletters Ltd, Germany.
    Cumming, S.
    BCC Research LLC, Germany.
    Prigneaux, J.
    EDANA, Germany.
    Stevenson, A.
    ELG Carbon Fibre, UK.
    Dils, C.
    IZM Fraunhofer Institute for Reliability and Microintegration, Germany.
    Granberg, Hjalmar
    RISE, Innventia.
    Slater, A.
    Lenzing Fibers Grimsby Ltd, Germany.
    Knorr, K.
    Norafin Industries GmbH, Germany.
    Jolly, M.
    Norafin Industries GmbH, Germany.
    Möbitz, C.
    RWTH Aachen University, Germany.
    Lutke, C.
    RWTH Aachen University, Germany.
    Hofmann, M.
    STFI Saxon Textile Research Institute, Germany.
    Käppel, D.
    Tenowo, Germany.
    How will high-performance nonwovens transform your business?2016In: Technical Textiles International, ISSN 0964-5993, Vol. 25, no 5, p. 33-37Article in journal (Other academic)
  • 12.
    Han, Shaobo
    et al.
    Linköping University, Sweden.
    Alvi, Naveed Ul Hassan
    Linköping University, Sweden.
    Granlöf, Lars
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Berggren, Magnus
    Linköping University, Sweden.
    Fabiano, Simone
    Linköping University, Sweden.
    Crispin, Xavier
    Linköping University, Sweden.
    A Multiparameter Pressure–Temperature–Humidity Sensor Based on Mixed Ionic–Electronic Cellulose Aerogels2019In: Advanced Science, ISSN 2198-3844, article id 1802128Article in journal (Refereed)
    Abstract [en]

    Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P–T–H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion–electron conducting aerogel is reported, which can sense P–T–H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion–electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications. © 2019 The Authors.

  • 13.
    Jiao, Fei
    et al.
    Linköping University, Sweden.
    Naderi, Ali
    BillerudKorsnäs, Sweden.
    Zhao, Dan
    Linköping University, Sweden.
    Schlueter, Joshua
    University of Kentucky, USA.
    Shahi, Maryam
    University of Kentucky, USA.
    Sundström, Jonas
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Edberg, Jesper
    Linköping University, Sweden.
    Ail, Ujwala
    Linköping University, Sweden.
    Brill, Joseph
    BillerudKorsnäs, Sweden.
    Lindström, Tom
    RISE - Research Institutes of Sweden, Bioeconomy. RISE, Innventia.
    Berggren, Magnus
    Linköping University, Sweden.
    Crispin, Xavier
    Linköping University, Sweden.
    Ionic thermoelectric paper2017In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, p. 16883-16888Article in journal (Refereed)
    Abstract [en]

    Ionic thermoelectric materials, for example, polyelectrolytes such as polystyrene sulfonate sodium (PSSNa),constitute a new class of materials which are attracting interest because of their large Seebeck coefficientand the possibility that they could be used in ionic thermoelectric SCs (ITESCs) and field effect transistors.However, pure polyelectrolyte membranes are not robust or flexible. In this paper, the preparation of ionicthermoelectric paper using a simple, scalable and cost-effective method is described. After a compositewas fabricated with nanofibrillated cellulose (NFC), the resulting NFC–PSSNa paper is flexible andmechanically robust, which is desirable if it is to be used in roll-to-roll processes. The robust NFC–PSSNa thermoelectric paper combines high ionic conductivity (9 mS cm1), high ionic Seebeckcoefficient (8.4 mV K1) and low thermal conductivity (0.75 W m1 K1) at 100% relative humidity,resulting in overall figure-of-merit of 0.025 at room temperature which is slightly better than that for thePSSNa alone. Fabricating a composite with cellulose enables flexibility and robustness and this is anadvance which will enable future scaling up the manufacturing of ITESCs, but also enables its use fornew applications for conformable thermoelectric devices and flexible electronics.

  • 14. Kawahara, J.
    et al.
    Andersson Ersman, Peter
    Wang, X.
    Gustafsson, G.
    Granberg, Hjalmar
    RISE, Innventia.
    Berggren, M.
    Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials2013In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, no 11, p. 3061-3069Article in journal (Refereed)
  • 15.
    Khan, Zia Ullah
    et al.
    Linköping University, Sweden.
    Edberg, Jesper
    Linköping University, Sweden.
    Hamedi, Mahiar Max
    KTH Royal Institute of Technology, Sweden.
    Gabrielsson, Roger
    Linköping University, Sweden.
    Granberg, Hjalmar
    RISE, Innventia.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Engquist, Isak
    Linköping University, Sweden.
    Berggren, Magnus
    Linköping University, Sweden.
    Crispin, Xavier
    Linköping University, Sweden.
    Thermoelectric Polymers and their Elastic Aerogels2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, no 22, p. 4556-4562Article in journal (Refereed)
    Abstract [en]

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

  • 16.
    Lindberg, Siv M.
    et al.
    RISE, Innventia.
    Béland, Marie-Claude
    RISE, Innventia.
    Edström, Karin
    RISE, Innventia.
    Granberg, Hjalmar
    RISE, Innventia.
    Berthold, Fredrik
    RISE, Innventia.
    Towards a cellulose-based society: Demonstrating the feasibility of new bio-based material concepts and products2016In: Proceedings - D and E 2016: 10th International Conference on Design and Emotion - Celebration and Contemplation, 2016, p. 411-419Conference paper (Refereed)
    Abstract [en]

    In moving towards a cellulose-based society, interdisciplinary effort is required as it is at this interface that new ideas are found and can grow. New bio-based materials will play a key role but getting them into the marketplace is not always straightforward. Many options are available both for sourcing and for producing composite materials from wood-based cellulose and poly-lactic acid (PLA). Depending on how the material is processed, a multitude of properties can be generated. The main goal with this work was to attempt to reduce the research-To-market gap. This was done by testing a new way of working together where we bundled innovation-oriented projects and research-oriented projects around the theme of material experience. We then systematically worked with material demonstrators. In this article, we exemplify the results by focusing on one research-oriented project that did not at the outset have a market context and on one innovation-oriented project with clear market requirements. In addition to introducing a new concept in bundling research-oriented and innovation-oriented projects, this paper contributes several practical examples of what material demonstrators can do. We also present an application and analysis of Moultrie’s extended Science-Technology-Application-Market (STAM) model to analyze the material demonstrators and design phases of the bundled projects. We modified the proposed classification with different types of material demonstrators according to how close they are to an actual product segment. Designers and scientists worked together but with different emphasis in each phase.

  • 17.
    Malti, Abdellah
    et al.
    Linköping University, Sweden.
    Edberg, Jesper
    Linköping University, Sweden.
    Granberg, Hjalmar
    RISE, Innventia.
    Ullah Khan, Zia
    Linköping University, Sweden.
    Andreasen, Jens W.
    DTU Technical University of Denmark, Denmark.
    Liu, Xianjie
    Linköping University, Sweden.
    Zhao, Dan
    Linköping University, Sweden.
    Zhang, Hao
    University of Kentucky, US.
    Yao, Yulong
    University of Kentucky, US.
    Brill, Joseph W.
    University of Kentucky, US.
    Engquist, Isak
    Linköping University, Sweden.
    Fahlman, Mats
    Linköping University, Sweden.
    Wågberg, Lars
    KTH Royal Institute of Technology, Sweden.
    Crispin, Xavier
    Linköping University, Sweden.
    Berggren, Magnus
    Linköping University, Sweden.
    An organic mixed ion-electron conductor for power electronics2015In: Advanced Science, E-ISSN 2198-3844, Vol. 3, no 2, article id 1500305Article in journal (Refereed)
    Abstract [en]

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

  • 18.
    Sandberg, Mats
    et al.
    Linköping University, Sweden.
    Tordera, Daniel
    Linköping University, Sweden.
    Granberg, Hjalmar
    RISE, Innventia.
    Sawatdee, Anurak
    RISE, Swedish ICT, Acreo.
    Dedic, Dina
    RISE, Innventia.
    Berggren, Magnus
    Linköping University, Sweden.
    Jonsson, Magnus P.
    Linköping University, Sweden.
    Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing2016In: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 1, article id 044003Article in journal (Refereed)
    Abstract [en]

    Smartmaterials can be used for awide variety of applications, including sensing and energy harvesting.Implementation of smartmaterials in large area devices requires scalablemanufacturing. The use ofpaper-making techniques would offer an enormous production capacity, allowing for low-cost andlarge-scalemanufacturing. In thisworkwe present a successful pilot scale papermachinemanufacturingof functional composite papers(100mmin−1 with aweb width of 30 cm) based on cellulose fibres andcommercial tetrapodal zinc oxidemicrowhiskers(ZnO-Ts).Carbon electrodes could successfully beprinted on the paper to form complete electronic devices where the paper itself is the active material.Thisenabled development of aZnO-composite paper photosensor,where we characterized its stability,sensitivity and speed. The devices show excellent photosensing properties over awide range of lightirradiances(0.01–1Sun), including short response times (∼10 s) and long-term stability. Under simulatedsunlight and a bias voltage of 1 V, small(0.5 cm2) two-probe interdigitated photosensor devices provided12μAphotocurrent.Under the same conditions, four-probe measurements of the composite papershowed a sheet resistance of 6.9·107Ω/sq. Four-probe measurements also demonstrated that the paperconductivity varies linearlywith light irradiance. To the best of ourknowledge, this is thefirst example ofpilot paper machine production of an optoelectronic paper, demonstrating the potential for large-scalepapermanufacturing of active smart paper from low-cost industrial bulk materials.

  • 19.
    Sani, Negar
    et al.
    Linköping University, Sweden.
    Wang, Xin
    RISE, Swedish ICT, Acreo.
    Granberg, Hjalmar
    RISE, Innventia.
    Andersson Ersman, Peter
    RISE, Swedish ICT, Acreo.
    Crispin, Xavier
    Linköping University, Sweden.
    Dyreklev, Peter
    RISE, Swedish ICT, Acreo.
    Engquist, Isak
    Linköping University, Sweden.
    Gustafsson, Göran
    RISE, Swedish ICT, Acreo.
    Berggren, Magnus
    Linköping University, Sweden.
    Flexible lamination-fabricated ultra-high frequency diodes based on self-supporting semiconducting composite film of silicon micro-particles and nano-fibrillated cellulose2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 28921Article in journal (Refereed)
    Abstract [en]

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-ÎŒPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-ÎŒPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-ÎŒPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  • 20.
    Wang, Xin
    et al.
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Grimoldi, Andrea
    Linköping University, Sweden.
    Håkansson, Karl
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Fall, Andreas
    RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.
    Granberg, Hjalmar
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Mengistie, Desalegn
    Linköping University, Sweden.
    Edberg, Jesper
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Engquist, Isak
    Linköping University, Sweden.
    Nilsson, David
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Berggren, Magnus
    Linköping University, Sweden.
    Gustafsson, Göran
    RISE - Research Institutes of Sweden, ICT, Acreo.
    Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool2019In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 66, p. 258-264Article in journal (Refereed)
    Abstract [en]

    The conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) is widely used in organic electronics and printed electronics due to its excellent electronic and ionic conductivity. PEDOT:PSS films exhibit anisotropic conductivities originating from the interplay of film deposition processes and chemical structure. The previous studies found that high boiling point solvent treated PEDOT:PSS exhibits an anisotropy of 3–4 orders magnitude. Even though both the in-plane and out-of-plane conductivities are important for the device performance, the out-of-plane conductivity is rarely studied due to the complexity with the experiment procedure. Cellulose-based paper or films can also exhibit anisotropic behavior due to the combination of their intrinsic fibric structure and film formation process. We have previously developed a conductive paper based on PEDOT:PSS and cellulose which could be used as the electrodes in energy storage devices. In this work we developed a novel measurement set-up for studying the anisotropy of the charge transport in such composite materials. A tool with two parallel plates mounted with spring loaded probes was constructed enabling probing both lateral and vertical directions and resistances from in-plane and out-of-plane directions to be obtained. The measurement results were then input and analyzed with a model based on a transformation method developed by Montgomery, and thus the in-plane and out-of-plane conductivities could be detangled and derived. We also investigated how the conductivity anisotropy depends on the microstructure of the cellulose template onto which the conductive polymer self-organizes. We show that there is a relatively small difference between the in-plane and out-of-plane conductivities which is attributed to the unique 3D-structure of the composites. This new knowledge gives a better understanding of the possibilities and limitations for using the material in electronic and electrochemical devices.

1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8