Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Gram, Annika
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    SKB utvecklas inom teori och praktik2009Inngår i: Betong, ISSN 1101-9190, nr 5, s. 43-45Artikkel i tidsskrift (Annet vitenskapelig)
  • 2.
    Gram, Annika
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Lagerblad, Björn
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Obtaining rheological parameters from slump flow test for self-compacting concrete2013Inngår i: Sustainable Construction Materials and Technologies, International Committee of the SCMT conferences , 2013, artikkel-id e244Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Rheological computer simulations of the Abrams cone are introduced in this paper. A Computational Fluid Dynamics software called OpenFOAM (https://www.openfd.o.uk) was used for the calculations. An easy-to-use model for obtaining yield stress and plastic viscosity of concrete on e.g. the building site is developed. Promising results show that both yield stress as well as plastic viscosity can be determined by this simple test.

  • 3.
    Gram, Annika
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Silfwerbrand, Johan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Applications for numerical simulation of self-compacting concrete2010Inngår i: Nordic Concrete Research, ISSN 0800-6377, Vol. 42, nr 2, s. 143-154Artikkel i tidsskrift (Annet vitenskapelig)
  • 4.
    Gram, Annika
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Silfwerbrand, Johan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Lagerblad, Björn
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Obtaining rheological parameters from flow test: analytical, computational and lab test approach2014Inngår i: Cement and Concrete Research, ISSN 0008-8846, E-ISSN 1873-3948, Vol. 63, s. 29-34Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the mix design process of cementitious suspensions, an adequate rheology of the cement paste is crucial. A novel rheological field test device for cementitious fluids is presented here and investigated theoretically, by computer simulation and by lab tests. A simple flow stoppage test with a timed spread passage point provides accurate rheological parameters according to the Bingham material model. Values for yield stress and plastic viscosity are obtained for a test specimen of no more than 19.75 · 10- 6 m3 of fluid. This volume is equivalent to 19.75 g of water at room temperature. Such a small volume allows reliable tests even for small amounts of fillers. Promising results show that both yield stress and plastic viscosity can be determined by this simple test. This novel rheological test method also enables the correlation of different rheological equipment used by different laboratories.

  • 5.
    Gram, Annika
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk. KTH Royal Institute of Technology, Sweden.
    Silfwerbrand, Johan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk. KTH Royal Institute of Technology, Sweden.
    Lagerblad, Björn
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk. KTH Royal Institute of Technology, Sweden.
    Particle motion in fluid: Analytical and numerical study2016Inngår i: Applied Rheology, ISSN 1430-6395, E-ISSN 1617-8106, Vol. 26, nr 2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Particle motion in fluid is discussed for one-particle systems as well as for dense suspensions, such as cementitious materials. The difference in large particle motion between larger particles and behaviour of fines (<125 μm) is explained, motion of one particle is shown by numerical simulation. It is concluded and highlighted that it is the particular motion of the fines that to a large extent contribute to the rheological properties of a suspension. It is also shown why larger ellipsoidal particles do not necessarily contribute to the increase of viscosity.

  • 6.
    Kraft, Lars
    et al.
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Rogers, Patrick
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Eriksson Brandels, Alexander
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Gram, Annika
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Trädgårdh, Jan
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Wallqvist, Viveca
    RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
    Experimentalrubber chip concrete mixes for shock absorbent bike lane pavements.2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In Sweden the amount of cyclists being injured in traffic has increased in recent years. Over 23,000 peopleper annum visit an acute care hospital after being injured whilst cycling. Most bicycle accidents are single“vehicle” accidents (82 %) and the most common collision is with another cyclist. Due to increased healthcare costs and the fact that more city dwelling people choose to cycle instead of going by car - due both tomonetary, environmental and personal health reasons - one is devoted to find solutions to make cyclingsafer. Besides efforts to increase helmet usage among cyclists and safer bike lane design separate from cartraffic, another way to reduce injuries may be achieved by modifying the bike lanes’ properties. This wouldresult in safer cycling and not only reducing non-cranial injuries, but also limit the severity of head injuries forcyclists not wearing a helmet. Thus, the pavement and bicycle lane material must be an efficient absorbentof impact energy. The work here presents efforts on modifying a concrete pavement by replacing coarseaggregates and sand with rubber chips and rubber crumbs to increase the shock absorbent capacity.Altogether, eighteen different mixtures with varying proportions of rubber, cement and sand were preparedand evaluated regarding elastic modulus and compressive strength. A fly-ash cement, microsilica and latexsolution were used in the concrete mixes. From the results obtained the mix with the best impact absorbingproperties, with a low E-modulus and sufficient compressive strength, was chosen for further evaluation.

  • 7.
    Mechtcherine, Viktor
    et al.
    Technische Universität Dresden, Germany.
    Gram, Annika
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB.
    Krenzer, Knut
    Institut für Angewandte Bauforschung Weimar GmbH, Germany.
    Schwabe, Jörg Henry
    University of Applied Science Jena, Germany.
    Shyshko, Sergiy
    Technische Universität Dresden, Germany.
    Roussel, Nicolas
    Universite Paris Est, France.
    Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications2014Inngår i: Materials and Structures, ISSN 1359-5997, E-ISSN 1871-6873, Vol. 47, nr 4, s. 615-630Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This article provides an overview of the development and the contemporary state of research in the field of simulating fresh concrete flow using the Discrete Element Method (DEM). First, this work originating from TC 222-SCF simulation of fresh concrete flow, covers the mathematical methodology, the identification of the model parameters and the link between the rheological properties of fresh concrete and the parameters of DEM-based models. Various examples of the estimation of model parameters and calibration of the model were demonstrated, followed by verifications by comparing the numerical results and the corresponding predictions by analytical formula and laboratory experiments. Furthermore, software used in concrete engineering and existing industrial applications of the developed particle models were described, showing the potential of DEM.

  • 8.
    Rogers, Patrick
    et al.
    RISE - Research Institutes of Sweden, Samhällsbyggnad, CBI Betonginstitutet.
    Silfwerbrand, Johan
    KTH Royal Institute of Technology, Sweden.
    Gram, Annika
    RISE - Research Institutes of Sweden, Samhällsbyggnad, CBI Betonginstitutet.
    Selander, A.
    Cementa AB, Sweden.
    Bulk hydrophobic civil engineering concrete for nordic conditions – Freeze thaw action2019Inngår i: Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, International Federation for Structural Concrete , 2019, s. 2044-2051Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Concrete is a composite building material which long term function can be modified for example by changing the water to cement ratio (w/c) or by adding in other chemical admixtures to change the fresh and hardened properties of the concrete. The overall goal of this study is to reduce the water absorption capacity of the cement paste/microstructure by at least 85 %. This is achieved by using bulk hydrophobic agents in the mixing phase rather than post hardened surface application. Numerous commercial agents and triglycerides (vegetable oils) were tested and showed promising results at a dosage equal to 3% of cement weight. This though affected compressive strengths negatively. As these concretes will be exposed to Nordic winter conditions, the concrete should perform well under repeated salt water freezing and thawing. This continued study will show how a selection of these bulk hydrophobic concretes performed during this part of the study. The concrete has a w/c = 0.4 with a cement content (CEM I) of 430 kg/m3.

  • 9.
    Roussel, Nicolas
    et al.
    University of Paris-Est, France.
    Gram, Annika
    RISE., SP – Sveriges Tekniska Forskningsinstitut, CBI Betonginstitutet AB, Hållbara byggnadsverk.
    Cremonesi, Massimiliano
    Polytechnic University of Milan, Italy.
    Ferrara, Liberato
    Polytechnic University of Milan, Italy.
    Krenzer, Knut
    IAB Weimar GmbH, Germany.
    Mechtcherine, Viktor
    TU Dresden, Germany.
    Shyshko, Sergiy
    TU Dresden, Germany.
    Skocec, Jan
    Heidelberg Cement Technology Center GmbH, Germany.
    Spangenberg, Jon
    DTU Technical University of Denmark, Denmark.
    Svec, Oldrich
    DTU Technical University of Denmark, Denmark.
    Nyholm Thrane, Lars
    Danish Technological Institute, Denmark.
    Vasilic, Ksenija
    BAM Federal Institute for Material Research and Testing, Germany.
    Numerical simulations of concrete flow: A benchmark comparison2016Inngår i: Cement and Concrete Research, ISSN 0008-8846, E-ISSN 1873-3948, Vol. 79, s. 265-271Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we compare numerical predictions of the concrete sample final shape for these two benchmark flows obtained by various research teams around the world using various numerical techniques. Our results show that all numerical techniques compared here give very similar results suggesting that numerical simulations of concrete filling ability when neglecting any potential components segregation have reached a technology readiness level bringing them closer to industrial practice.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0