Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergvall, Niklas
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Cheah, You Wayne
    Chalmers University of Technology, Sweden.
    Bernlind, Christian
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical Process and Pharmaceutical Development.
    Bernlind, Alexandra
    RISE Research Institutes of Sweden, Bioeconomy and Health, Chemical Process and Pharmaceutical Development.
    Olsson, Louise
    Chalmers University of Technology, Sweden.
    Creaser, Derek
    Chalmers University of Technology, Sweden.
    Sandström, Linda
    RISE Research Institutes of Sweden, Bioeconomy and Health, Biorefinery and Energy.
    Öhrman, Olov GW
    Preem AB, Sweden.
    Upgrading of fast pyrolysis bio-oils to renewable hydrocarbons using slurry- and fixed bed hydroprocessing2024In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 253, article id 108009Article in journal (Refereed)
    Abstract [en]

    Liquefaction of lignocellulosic biomass through fast pyrolysis, to yield fast pyrolysis bio-oil (FPBO), is a technique that has been extensively researched in the quest for finding alternatives to fossil feedstocks to produce fuels, chemicals, etc. Properties such as high oxygen content, acidity, and poor storage stability greatly limit the direct use of this bio-oil. Furthermore, high coking tendencies make upgrading of the FPBO by hydrodeoxygenation in fixed-bed bed hydrotreaters challenging due to plugging and catalyst deactivation. This study investigates a novel two-step hydroprocessing concept; a continuous slurry-based process using a dispersed NiMo-catalyst, followed by a fixed bed process using a supported NiMo-catalyst. The oil product from the slurry-process, having a reduced oxygen content (15 wt%) compared to the FPBO and a comparatively low coking tendency (TGA residue of 1.4 wt%), was successfully processed in the downstream fixed bed process for 58 h without any noticeable decrease in catalyst activity, or increase in pressure drop. The overall process resulted in a 29 wt% yield of deoxygenated oil product (0.5 wt% oxygen) from FPBO with an overall carbon recovery of 68%.

    Download full text (pdf)
    fulltext
  • 2.
    Hammarström, Lars G. J.
    et al.
    Science for Life Laboratory, Sweden; Glionova Therapeutics, Sweden.
    Harmel, Robert K.
    Science for Life Laboratory, Sweden; FMP Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany.
    Granath, Mikael
    OnTargetChemistry AB, Sweden.
    Ringom, Rune
    OnTargetChemistry AB, Sweden.
    Gravenfors, Ylva
    Stockholm University, Sweden.
    Färnegårdh, Katarina
    Stockholm University, Sweden.
    Svensson, Per H.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Process Development, Analys och fastfas.
    Wennman, David
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Process Development, Analys och fastfas.
    Lundin, Göran
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Process Development, Analys och fastfas.
    Roddis, Ylva
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Process Development, Analys och fastfas.
    Kitambi, Satish
    Karolinska Institute, Sweden.
    Bernlind, Alexandra
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Process Development, Analys och fastfas.
    Lehmann, Fredrik
    OnTargetChemistry AB, Sweden.
    Ernfors, Patrik
    Karolinska Institute, Sweden.
    The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features2016In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, no 18, p. 8577-8592Article in journal (Refereed)
    Abstract [en]

    Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.

  • 3.
    Malmquist, Jonas
    et al.
    Novandi Chemistry AB, Sweden.
    Bernlind, Alexandra
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Process Development, Analys och fastfas.
    Lindberg, Sandra
    AstraZeneca, Sweden; FOI Swedish Defence Research Agency, Sweden.
    Imaging agent of a TRPA1 inhibitor2013In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 56, no 9-10, p. 536-537Article in journal (Refereed)
    Abstract [en]

    A method for the preparation of [3'-3H]-4-(2'-chloro-6'- hydroxyphenyl)-2-thioxo-3,4-dihydro-1H-indeno[1,2-d]pyrimidin-5 (2H)-one (1), a TRPA1 inhibitor, was developed for the evaluation of imaging properties of a class of TRPA1 inhibitors. 1 was prepared via tritiation of a protected benzaldehyde followed by a tetrachlorosilane catalyzed multicomponent one-step fusion and was obtained at a specific activity of 0.9 TBq/mmol. A 3H-NMR spectrum on 13.5MBq at 75 μM was recorded.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf