Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Anyangwe Nwaboh, Javis
    et al.
    Physikalisch-Technische Bundesanstalt, Germany.
    Persijn, Stefan
    VSL Dutch Metrology Institute, The Netherlands.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Bohlen, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Werhahn, Olav
    Physikalisch-Technische Bundesanstalt, Germany.
    Ebert, Volker
    Physikalisch-Technische Bundesanstalt, Germany.
    Metrological quantification of CO in biogas using laser absorption spectroscopy and gas chromatography2018In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 29, no 9, article id 095010Article in journal (Refereed)
    Abstract [en]

    Biogas has a vital role in the future market of renewable energy. When upgraded to biomethane, it can be injected into natural gas grids if the level of certain impurities complies with the specifications in EN16723. For some of these impurities, suitable measurement methods are lacking which hampers the quality control of biomethane to be injected into natural gas networks. Here, we report the evaluation of three detection methods suitable for carbon monoxide (CO) in biogas and biomethane applications for which EN16723 specifies an upper limit of 0.1% (1000 µmol/mol). Two of these methods are based on laser absorption spectroscopy (LAS) and one on gas chromatography (GC). Both LAS spectrometers are employing direct absorption spectroscopy and operating at 4.6µm, probing a single CO absorption line in the fundamental CO band: One – called dTDLAS (direct tunable diode laser absorption spectroscopy)- is based on a new Interband Cascade Laser specially designed for biogas and biomethane applications, while the other is based on Quantum Cascade Laser Absorption Spectroscopy (QCLAS). The GC is equipped with two packed columns (Hayesep Q and Molecular Sieve 5A) and a thermal conductivity detector. Carbon monoxide amount fraction results in biogas matrices derived using these three measurement methods are compared to amount fraction values of different, gravimetrically prepared reference gas standards of CO in biogas. These were used to validate the measurement capabilities. The measured CO amount fraction results from LAS and GC covered 10 µmol/mol to 30000 µmol/mol (system measurement ranges, LAS: 3 µmol/mol - 1000 µmol/mol, GC: 500 µmol/mol - 30000 µmol/mol) and were in excellent agreement with the gravimetric values of the gas standards. At 400 µmol/mol, the guide to the expression of uncertainty in measurement (GUM) compliant relative standard uncertainties of our calibration-free dTDLAS and the gas-calibrated QCLAS systems are estimated to be 1.4 % vs 0.5 %, respectively. The relative standard uncertainty of the GC CO measurements at 5075 µmol/mol is 1.3 %. This work demonstrates that, by means of GC and LAS, relative standard uncertainties of 1.4 % and below can be reached for CO measurements in biogas and that cost-optimized calibration-free approaches not requiring frequent use of gas standards have become available.

  • 2.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Towards a European infrastructure for the characterisation of energy gases2011In: Joint IMEKO TC11-TC19-TC20 International Symposium Metrological Infrastructure, Environmental and Energy Measurement, 2011, , p. 23-26Conference paper (Refereed)
  • 3.
    Arrhenius, Karine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Kemi.
    Brown, Andrew S.
    NPL National Physical Laboratory, UK.
    van der Veen, Adriaan M. H.
    VSL Dutch Metrology Institute, Netherlands.
    Suitability of different containers for the sampling and storage of biogas and biomethane for the determination of the trace-level impurities - A review2016In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 902, p. 22-32Article, review/survey (Refereed)
    Abstract [en]

    The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement.

  • 4.
    Arrhenius, Karine
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Fischer, Andreas
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Safety and Transport, Measurement Science and Technology.
    Methods for sampling biogas and biomethane on adsorbent tubes after collection in gas bags2019In: Applied Sciences, E-ISSN 2076-3417, Vol. 9, no 6, article id 1171Article in journal (Refereed)
    Abstract [en]

    Biogas is a renewable energy source with many different production pathways and numerous excellent opportunities for use; for example, as vehicle fuel after upgrading (biomethane). Reliable analytical methodologies for assessing the quality of the gas are critical for ensuring that the gas can be used technically and safely. An essential part of any procedure aimed at determining the quality is the sampling and transfer to the laboratory. Sampling bags and sorbent tubes are widely used for collecting biogas. In this study, we have combined these two methods, i.e., sampling in a gas bag before subsequent sampling onto tubes in order to demonstrate that this alternative can help eliminate the disadvantages associated with the two methods whilst combining their advantages; with expected longer storage stability as well as easier sampling and transport. The results of the study show that two parameters need to be taken into account when transferring gas from a bag on to an adsorbent; the water content of the gas and the flow rate used during transfer of the gas on to the adsorbent. © 2019 by the authors.

  • 5.
    Arrhenius, Karine
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Karlsson, Anders
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Hakonen, Aron
    Ohlson, Lars
    Fordonsgas Sverige AB, Sweden.
    Yaghooby, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Safety and Transport, Measurement Science and Technology.
    Variations of fuel composition during storage at Liquefied Natural Gas refuelling stations2018In: Journal of Natural Gas Science and Engineering, ISSN 1875-5100, E-ISSN 2212-3865, Vol. 49, p. 317-323Article in journal (Refereed)
    Abstract [en]

    Liquefied Natural Gas (LNG) and Liquefied Biogas (LBG) utilization within the heavy duty transport sector is today a sustainable alternative to the use of oil. However, in spite of the high degree of insulation in the storage tank walls, it is impossible to fully avoid any net heat input from the surroundings. Due to some degree of vaporization this results in variation in gas composition during storage at refuelling stations, potentially leading to engine failures. Within this study, a vaporizer/sampler has been built and tested at a station delivering liquefied biomethane (LBG) and occasionally; such in this case, LNG to heavy and medium duty trucks. The vaporizer/sampler has then been used to study the variation of the LNG composition in the storage tank during a two weeks period. The results clearly underline a correlation between the gas phase and the liquid phase as the concentration changes follow the same trend in both phases. Two opposite effects are assumed to influence the concentration of methane, ethane and propane in the liquid and in the gas phase. On one hand, because of the probable presence of not fully mixed layers in the storage tank and due to vehicles being refuelled, both liquid and gas phases are enriched in methane at the expense of ethane and propane. On the other hand, due to boil-off effect towards the end of the storage period, both liquid and gas phases are enriched in ethane and propane at the expense of methane.

  • 6.
    Arrhenius, Karine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Kühnemuth, Daniel
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Kemi.
    Traceable reference gas mixtures for sulfur-free natural gas odorants2014In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 13, no 1, p. 6695-6702Article in journal (Refereed)
    Abstract [en]

    The first reference gas mixtures of sulfur-free natural gas odorants that are traceable to the International System of Units (SI) have been produced and their compositions validated. These mixtures, which contain methyl acrylate and ethyl acrylate at amount fractions between 1.1 and 2.1 μmol mol-1, can be used to underpin measurements of sulfur-free odorants, which are increasingly being used to odorize natural gas in transmission networks as they have less harmful properties than traditional sulfur-containing odorants. The reference gas mixtures produced have been shown to be stable in passivated aluminum cylinders for at least 8 months and have been validated (to within 6% or less) by interlaboratory measurements at three National Measurement Institutes. The stability of methyl acrylate and ethyl acrylate in gas sampling bags has been investigated, and the challenges of analyzing 2-ethyl-3- methylpyrazine, which is used as a stabilizer in sulfur-free odorants, are also briefly discussed.

  • 7.
    Arrhenius, Karine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
    Podien, Doris
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Yaghooby, Haleh
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Smajovic, Nijaz
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Optimization of an Analytical Method for the Measurement of Oil Carryover from a Compressor in Compressed Natural Gas Refueling Stations2015In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 29, no 4, p. 2416-2421Article in journal (Refereed)
    Abstract [en]

    The aims of the study were to determine the best method for extracting oil absorbed on coalescing filters at compressed natural gas (CNG) refueling stations and to compare the mass spectrometer (MS) and flame ionization detector (FID) for the quantification of the oil recovered in the extracts. Dichloromethane and heptane as solvents gave slightly higher recovery yields than pentane. The preferred extraction method with regard to time and solvent consumption consisted of an ultrasonic extraction, followed by removal of the remaining solvent under a stream of nitrogen. The FID and MS were found to be equally suitable for quantifying oil carryover, if the sample only contained the target oil when the instruments of analysis have been properly calibrated. If the sample is contaminated by compounds other than the target oil, MS and FID will provide different valuable information: MS may give information on the structure of the contaminants, while FID will give a more reliable quantification without proper calibration. The work discusses issues with the reusability of the filters and how to handle the memory effects

  • 8.
    Arrhenius, Karine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Rosell, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Bäfver, Linda
    Analysis of unregulated emissions from an off-road diesel engine during realistic work operations2011In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 45, no 30, p. 5394-5398Article in journal (Refereed)
  • 9.
    Arrhenius, Karine
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Shannigrahi, A. S.
    University of Gothenburg, Sweden.
    Langer, Sarka
    RISE, SP – Sveriges Tekniska Forskningsinstitut. University of Gothenburg, Sweden; IVL Swedish Environmental Research Institute, Sweden.
    Arrhenius, K.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Hagström, M.
    University of Gothenburg, Sweden.
    Janhäll, S.
    University of Gothenburg, Sweden; Swedish National Road and Transport Research Institute, Sweden.
    Hallquist, M.
    University of Gothenburg, Sweden.
    Pathak, R. K.
    University of Gothenburg, Sweden.
    N-Alkanoic monocarboxylic acid concentrations in urban and rural aerosols: Seasonal dependence and major sources2014In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 143, no Jun, p. 228-237Article in journal (Refereed)
    Abstract [en]

    We report new data on the abundance and distribution of n-monocarboxylic acids (n-MCAs) in fine- and coarse-mode aerosols in rural and urban areas of Sweden, and determine their possible sources. Overall, C6-C16 n-MCAs accounted for ~0.5-1.2% of the total PM10 (particulate matter ≤10μm) mass. In general, the C12-C16 fraction was the most abundant (>75%), with the exception of wintertime samples from a rural site, where C6-C11 acids accounted for 65% of the total C6-C16 n-MCA mass. Positive matrix factorization analysis revealed four major sources of n-MCAs: traffic emissions, wood combustion, microbial activity, and a fourth factor that was dominated by semi-volatile n-MCAs. Traffic emissions were important in the urban environment in both seasons and at the rural site during winters, and were a major source of C9-C11 acids. Wood combustion was a significant source at urban sites during the winter and also to some extent at the rural site in both seasons. This is consistent with the use of wood for domestic heating but may also be related to meat cooking. Thus, during the winter, traffic, wood combustion and microbial activity were all important sources in the urban environment, while traffic was the dominant source at the rural site. During the summer, there was considerable day-to-day variation in n-MCA concentrations but microbial activity was the dominant source. The semi-volatile low molecular weight C6-C8 acids accounted for a small (~5-10%) fraction of the total mass of n-MCAs. This factor is unlikely to be linked to a single source and its influence instead reflects the partitioning of these compounds between the gas and particle phases. This would explain their greater contribution during the winter.

  • 10.
    Arrhenius, Karine
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Yaghooby, Haleh
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Rosell, Lars
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Culleton, Lucy
    NPL National Physical Laboratory, UK.
    Bartlett, Sam
    NPL National Physical Laboratory, UK.
    Murugan, Arul
    NPL National Physical Laboratory, UK.
    Brewer, Paul
    NPL National Physical Laboratory, UK.
    Li, Jianrong
    VSL Van Swinden Laboratorium B.V., The Netherlands.
    van der Veen, Adriaan M. H.
    VSL Van Swinden Laboratorium B.V., The Netherlands.
    Krom, Iris
    VSL Van Swinden Laboratorium B.V., The Netherlands.
    Lestremau, Francoise
    INERIS Institut national de l'environnement industriel et des risques, France.
    Beranek, Jan
    ČMI Česky metrologicky institut, Czech Republic.
    Suitability of vessels and adsorbents for the short-term storage of biogas/biomethane for the determination of impurities – Siloxanes, sulfur compounds, halogenated hydrocarbons, BTEX2017In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 105, p. 127-135Article in journal (Refereed)
    Abstract [en]

    Biogas is a renewable energy source with many different production pathways and various excellent opportunities to use, for example as vehicle fuel (biomethane). Reliable analytical methodologies for assessing the quality of the gas are critical to ensure that the gas can technically and safely be used. An essential part of any procedure aiming to determine the quality is the sampling and the transfer to the laboratory. One of the greatest challenges is then to ensure that the composition of the sample collected does not change between the time of sampling and the analysis. The choice of the sampling vessel to be used must be made only after fully assessing its short-term stability. In this paper, the results from short-term stability studies in different vessels (cylinders, bags and sorbents) are presented for siloxanes, BTEX, halogenated hydrocarbons and sulfur compounds. Storage of dry gas at high pressure (> 6 MPa) appears to be a good alternative however it is currently challenging to find an optimal treatment of the cylinders for all species to be assessed in biogas/biomethane. At lower pressure, adsorption effects on the inner surface of the cylinders have been observed. The use of bags and sorbent tubes also shows limitation. No existing sorbent tubes are sufficiently universal as to trap all possible impurities and high boiling compounds may adsorbed on the inner surface of the bags walls. Moreover, the presence of water when storing biogas most certainly impacts the storage stability of compounds in most vessels. Using at least two sampling methods for a given compound and comparing results will allow taking into account the eventual effects of water vapour, and adsorption on the inner surface of the vessels.

  • 11.
    Blomqvist, Per
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP Sveriges tekniska forskningsinstitut / Brandteknik, forskning (BRf ).
    Hertzberg, Tommy
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, material (BRm).
    Tuovinen, Heimo
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP Sveriges tekniska forskningsinstitut / Brandteknik, forskning (BRf ).
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Rosell, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Detailed determination of smoke gas contents using a small-scale controlled equivalence ratio tube furnace method2007In: Fire and Materials, Vol. 31, no 8, p. 495-521Article in journal (Refereed)
  • 12.
    Brown, Andrew S.
    et al.
    NPL National Physical Laboratory, UK.
    van der Veen, Adriaan M. H.
    VSL Dutch Metrology Institute, Netherlands.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Murugan, Arul
    NPL National Physical Laboratory, UK.
    Culleton, Lucy P.
    NPL National Physical Laboratory, UK.
    Ziel, Paul R.
    VSL Dutch Metrology Institute, Netherlands.
    Li, Jianrong
    VSL Dutch Metrology Institute, Netherlands.
    Sampling of gaseous sulfur-containing compounds at low concentrations with a review of best-practice methods for biogas and natural gas applications2015In: TrAC. Trends in analytical chemistry, ISSN 0165-9936, E-ISSN 1879-3142, Vol. 64, p. 42-52Article in journal (Refereed)
    Abstract [en]

    The accurate quantification of low-concentration sulfur-containing compounds is essential for the biogas and natural gas industries. We review literature data for the stability of these compounds in standard gas mixtures when sampled in cylinders with different passivations, sample bags, sorbent tubes, solid-phase microextraction and glass sampling bulbs, and we present new data obtained at our three National Measurement Institutes. We show that losses of sulfur-containing compounds are minimized when using passivated sampling cylinders, and the most suitable sorbent material for sampling these compounds is Tenax TA. We also discuss methods for transferring gas from sample vessels to analyzers and give recommendations for the selection of regulators (and other pressure-reducing devices) and transfer lines. Further, we propose approaches that could be taken to reduce or correct for losses in order to provide more accurate measurements of sulfur-containing compounds.

  • 13.
    Földváry, Veronika
    et al.
    Slovak University of Technology, Slovakia.
    Bekö, Gabriel
    DTU Technical University of Denmark, Denmark.
    Langer, Sarka
    IVL Swedish Environmental Research Institute, Sweden; Chalmers University of Technology, Sweden.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Petráš, Dusan
    Slovak University of Technology, Slovakia.
    Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia2017In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 122, p. 363-372Article in journal (Refereed)
    Abstract [en]

    Buildings are responsible for a substantial portion of the global energy consumption. Most of the multifamily residential buildings built in the 20th century in Central and Eastern Europe do not satisfy the current requirements on energy efficiency. Nationwide measures taken to improve the energy efficiency of these buildings rarely consider their impact on the indoor air quality (IAQ). The objective of the present study was to evaluate the impact of simple energy renovation on IAQ, air exchange rates (AER) and occupant satisfaction in Slovak residential buildings. Three pairs of identical naturally ventilated multifamily residential buildings were examined. One building in each pair was newly renovated, the other was in its original condition. Temperature, relative humidity (RH) and the concentration of carbon dioxide (CO2) were measured in 94 apartments (57%) during one week in the winter. A questionnaire related to perceived air quality, sick building syndrome symptoms and airing habits was filled by the occupants. In a companion experiment, the IAQ was investigated in 20 apartments (50%) of a single residential building before and after its renovation. In this experiment, concentrations of nitrogen dioxide (NO2), formaldehyde and total and individual volatile organic compounds (VOC) were also measured. CO2 concentrations were significantly higher and AERs were lower in the renovated buildings. Formaldehyde concentrations increased after renovation and were positively correlated with CO2 and RH. Energy renovation was associated with lower occupant satisfaction with IAQ. Energy retrofitting efforts should be complemented with improved ventilation in order to avoid adverse effects on IAQ.

  • 14.
    Hakonen, Aron
    et al.
    RISE - Research Institutes of Sweden. Sensor Visions AB, Sweden.
    Karlsson, Anders
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Lindman, Lena
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Büker, Oliver
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Particles in fuel-grade Liquefied Natural Gas2018In: Journal of Natural Gas Science and Engineering, ISSN 1875-5100, E-ISSN 2212-3865, Vol. 55, p. 350-353Article in journal (Refereed)
    Abstract [en]

    The utilization of Liquefied Natural Gas (LNG) in the heavy-duty transport sector is a convenient and cost-effective step towards a sustainable future. However, there are questions regarding LNG fuel quality and destructive particles for engines. Basically nothing is known about particles in the commercial LNG being fueled today. The gravimetric and SEM-EDX results here demonstrates that there are precarious metal and silicon dioxide particles in fuel-grade LNG that can clog and erode engine parts. Considering these results further research in the direction of this study, including standardized method development, is highly motivated.

  • 15.
    Haloua, Frederique
    et al.
    LNE Laboratoire national de métrologie et d'essais, France.
    Bacquart, Thomas
    NPL National Physical Laboratory, UK.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    Delobelle, Benoit
    MAHYTEC, France.
    Ent, Hugo
    VSL Van Swinden Laboratorium, The Netherlands.
    Metrology for hydrogen energy applications: a project to address normative requirements2018In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 29, no 3, article id Special Section on the 18th International Congress of Metrology (CIM 2017)Article in journal (Refereed)
    Abstract [en]

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  • 16.
    Langer, Sarka
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Moldanová, Jana
    Ljungström, Evert
    Ekberg, Lars
    Ultrafine Particles Produced by Ozone/Limonene Reactions in Indoor Air under Low/Closed Ventilation Conditions2008In: Atmospheric Environment, Vol. 42, no 18, p. 4149-4159Article in journal (Refereed)
  • 17.
    Murugan, A.
    et al.
    NPL National Physical Laboratory, UK.
    de Huu, M.
    METAS Federal Institute of Metrology, Sweden.
    Bacquart, T.
    NPL National Physical Laboratory, UK.
    van Wijk, J.
    VSI, Netherlands.
    Arrhenius, Karine
    RISE - Research Institutes of Sweden, Bioscience and Materials, Chemistry and Materials.
    te Ronde, I.
    NEN, Netherlands.
    Hemfrey, D.
    NPL National Physical Laboratory, UK.
    Measurement challenges for hydrogen vehicles2019In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487Article in journal (Refereed)
    Abstract [en]

    Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering, quality assurance, quality control and sampling.

  • 18.
    Nilsson Påledal, Sören
    et al.
    Tekniska verken i Linköping AB, Sweden.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Kemi.
    Moestedt, Jan
    Tekniska verken i Linköping AB, Sweden.
    Engelbrektsson, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor.
    Stensen, Katarina
    Tekniska verken i Linköping AB, Sweden.
    Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG)2016In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 145, p. 424-430Article in journal (Refereed)
    Abstract [en]

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty.Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  • 19.
    Persson, Henry
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Bremer, Peter
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Elektronik, Produktsäkerhet.
    Rosell, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Lindström, Kent
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Volym, flöde, temperatur o densitet.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Fuel vapour composition and flammability properties of E852008Report (Refereed)
  • 20.
    Persson, Henry
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Brandteknik, skydd (BRs ).
    Bremer, Peter
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Elektronik, Produktsäkerhet.
    Rosell, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Lindström, Kent
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Mätteknik, Volym, flöde, temperatur o densitet.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Organisk kemi (Kmo).
    Sammansättning och antändningsegenskaper hos bränsleångor i tankar innehållande E852007Report (Refereed)
  • 21.
    Van Der Veen, Adriaan M. H.
    et al.
    VSL Dutch Metrology Institute, Netherlands.
    Brown, Andrew S.
    NPL National Physical Laboratory, UK.
    Li, Jianrong
    VSL Dutch Metrology Institute, Netherlands.
    Murugan, Arul
    NPL National Physical Laboratory, UK.
    Heinonen, Martti
    MIKES Centre for Metrology and Accreditation, Finland.
    Haloua, Frédérique
    LNE Laboratoire National de Métrologie et d'Essais, France.
    Arrhenius, Karine
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Kemi.
    Measurement requirements for biogas specifications2015In: 17th International Congress of Metrology, 2015Conference paper (Refereed)
    Abstract [en]

    The increased use of biogas and biomethane urgently requires that these non-conventional energy gases can be transmitted through natural gas grids and refuelling stations. The European Standardization Organisation CEN is developing specifications for green gas which supplement the specifications for natural gas. The specifications for green gas address a range of parameters not commonly covered in natural gas, such as the contents of impurities (e.g., siloxanes, ammonia, halogenated hydrocarbons, and hydrogen chloride), dust content and particles. In a collaboration between 12 European metrology institutes and 3 university groups, robust and reliable methods are developed to support these draft specifications and to enable conformity assessment. The project also deals with issues related to density, calorific value, moisture content, and the sampling of biogas. This paper gives an overview of the state-ofthe-art in green gas testing, as well as an outlook what methods need be developed.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7