The internal phase separation technique is a versatile method for liquid core-polymer shell formation, yet limited to very hydrophobic core materials and actives. The use of polymeric cores instead circumvents this restriction due to the absent mixing entropy for binary polymer mixtures which allows the polymeric core (and the active) to approach the polarity of the shell. Polystyrene core-shell and janus particles were formulated using polymethylmethacrylate, poly(lactic acid), poly(lactic acid-co-glycolic acid), poly(ε-caprolactone) or cellulose triacetate as shell-forming polymers. The morphology and the partitioning was experimentally determined by selectively staining the core and the shell with β-carotene and methylene blue respectively. In addition, the van Oss formalism was introduced to theoretically predict the thermodynamic equilibrium morphology. As elucidated using the theoretical predictions as well as experimental optical tensiometry, it was found that the driving force for core-shell morphology is, in contrast to liquid core-polymer shell particles, a low core-shell interfacial tension.
The formation of strongly elastic physical gels based on poly(alkylene oxide)-grafted hyaluronan or carboxymethylcellulose, exhibiting both shear-thickening and strain-hardening have been studied using rheometry and explained using a slightly different interpretation of the transient network theory. The graft copolymers were prepared by a quantitative coupling reaction. Their aqueous solutions displayed a thermoreversible continuous transition from Newtonian fluid to viscoelastic solid which could be controlled by the reaction conditions. The evolution of all material properties of the gel could be categorized into two distinct temperature regimes with a fast evolution at low temperatures followed by a slow evolution at high temperatures. The activation energy of the zero shear viscosity and the relaxation time of the graft inside the interconnecting microdomains were almost identical to each other in both temperature regimes. This suggests that the number of microdomains remained approximately constant whereas the aggregation number inside the microdomains increased according to the binodal curve of the thermosensitive graft.
A series of thermoresponsive graft copolymers, gelling at physiological conditions in aqueous solution and cell growth media, have been synthesized using quantitative coupling between a small set of amino-functionalized poly(alkylene oxide) copolymers (PAO) and the carboxylate of the biologically important polysaccharides (PSa) carboxymethylcellulose and the less reactive hyaluronate. Quantitative grafting enables the establishment of structure-function relationship which is imperative for controlling the properties of in situ gelling hydrogels. The EDC/NHS-mediated reaction was monitored using SEC-MALLS, which revealed that all PAOs were grafted onto the PSa backbone. Aqueous solutions of the graft copolymers were Newtonian fluids at room temperatures and formed reversible physical gels at elevated temperatures which were noncytotoxic toward chondrocytes. The established structure-function relationship was most clearly demonstrated by inspecting the thermogelling strength and the onset of thermogelling in a phase diagram. The onset of the thermogelling function could be controlled by the global PAO concentration, independent of graft ratio.
Aqueous core-shell particles based on polystyrene, poly(methyl methacrylate) or polycaprolactone have been formulated using a facile double emulsion-based solvent evaporation method. The size distribution is narrow, and the morphology control is remarkable given the simple characteristics of the encapsulation method. The inner droplets are stabilized by oil-soluble poly(ethylene oxide)-based block copolymers which are anchored in the polymeric shell by using hydrophobic blocks of the same type as that of the shell-forming polymer. This facilitates the efficient encapsulation of dyes and hydrophilic biocides. [Figure not available: see fulltext.].
The application range of man-made cellulosic fibers is limited by the absence of cost- and manufacturing-efficient strategies for anisotropic hierarchical functionalization. Overcoming these bottlenecks is therefore pivotal in the pursuit of a future bio-based economy. Here, we demonstrate that colloidal silica nanoparticles (NPs), which are cheap, biocompatible and easy to chemically modify, enable the control of the cross-sectional morphology and surface topography of ionic liquid-spun cellulose fibers. These properties are tailored by the silica NPs' surface chemistry and their entry point during the wet-spinning process (dope solution DSiO2 or coagulation bath CSiO2). For CSiO2-modified fibers, the coagulation mitigator dimethylsulphoxide allows for controlling the surface topography and the amalgamation of the silica NPs into the fiber matrix. For dope-modified fibers, we hypothesize that cellulose chains act as seeds for directed silica NP self-assembly. This results for DSiO2 in discrete micron-sized rods, homogeneously distributed throughout the fiber and for glycidoxy-surface modified DSiO2@GLYEO in nano-sized surface aggregates and a cross-sectional core-shell fiber morphology. Furthermore, the dope-modified fibers display outstanding strength and toughness, which are both characteristic features of biological biocomposites.
Triggered release from responsive drug reservoirs activated by remote stimuli is desired in a range of fields. Critical bottlenecks are cost-efficient formulation avenues applicable for industrial scale-up, viable triggers and immediate release rather than continuous release upon activation. UV-sensitive microcapsules based on self-immolating polymers in combination with thin shells and morphological weak spots should allow for immediate triggered release. Polyphthalaldehyde-based microcapsules were prepared using several variations of the internal phase separation route. In addition, a fluorescence microscopy method was developed to study both the microcapsule morphology and the triggered release in-situ. The microcapsule formation was driven by the surface activity of the stabilizer, effectively lowering the high polymer-water interfacial tension, which is in sharp contrast to conventional encapsulation systems. Contrary to previous findings, a core–shell morphology was obtained via slow emulsion-to-suspension transformation. Rapid transformation captured intermediate inverted core–shell structures. The capsules were highly sensitive to both acid- and UV-mediated triggers, leading to an unzipping and rupturing of the shell that released the core content. Poly(methacrylic acid)-stabilized microcapsules displayed immediate UV-triggered release provided by their stimuli-sensitive blueberry morphology. Both capsules in aqueous and dry environment started to lose their core content after less than one minute of UV light exposure.
Stimulus-responsive microcapsules pose an opportunity to achieve controlled release of the entire load instantaneously upon exposure to an external stimulus. Core-shell microcapsules based on the polyanhydride poly(bis(2-carboxyphenyl)adipate) as a shell were formulated in this work to encapsulate the model active substance pyrene and enable a pH-controlled triggered release. A remarkably narrow triggering pH interval was found where a change in pH from 6.4 to 6.9 allowed for release of the entire core content within seconds. The degradation kinetics of the shell were measured by both spectrophotometric detection of degradation products and mass changes by quartz crystal microbalance with dissipation monitoring and were found to correlate excellently with diffusion coefficients fitted to release measurements at varying pH values. The microcapsules presented in this work allow for an almost instantaneous triggered release even under mild conditions, thanks to the designed core-shell morphology.
Hypothesis: Microcapsule formation, following internal phase separation by solvent evaporation, is controlled by two main factors of thermodynamic and kinetic origin. Morphology prediction has previously focused on the final thermodynamical state in terms of spreading conditions, limiting the prediction accuracy. By additionally considering kinetic effects as the emulsion droplet evolves through the two-phase region of its ternary phase diagram during solvent evaporation, this should enhance prediction accuracy and explain a wider range of morphologies. Experiments: Dynamical interfacial tensions, and thereby spreading coefficients, during the formation of poly(methyl methacrylate) and poly(D,L-lactic-co-glycolic acid) microcapsules were measured by first establishing the boundaries and tie-lines of the ternary system in the emulsion droplets. Kinetic effects during the formation were investigated by varying the solvent evaporation rate and hence the time for polymer shell formation equilibration. The theory was validated by comparing predicted morphologies to microscopic snapshots of intermediate and final morphologies. Findings: The proposed theory explained both intermediate acorn and core–shell morphologies, where a late transition from acorn to core–shell produced microcapsules containing highly off-centered cores. By considering the kinetic factors, the formulation could be altered from yielding kinetically frozen acorns to core–shell and from yielding multicore to single core microcapsules. © 2024
Functional textiles is a rapidly growing product segment in which sustained release of actives often plays a key role. Failure to sustain the release results in costs due to premature loss of functionality and resource inefficiency. Conventional application methods such as impregnation lead to an excessive and uncontrolled release, which - for biocidal actives - results in environmental pollution. In this study, microcapsules are presented as a means of extending the release from textile materials. The hydrophobic model substance pyrene is encapsulated in poly(d,l-lactide-co-glycolide) microcapsules which subsequently are loaded into cellulose nonwovens using a solution blowing technique. The release of encapsulated pyrene is compared to that of two conventional functionalization methods: surface and bulk impregnation. The apparent diffusion coefficient is 100 times lower for encapsulated pyrene compared to impregnated pyrene. This clearly demonstrates the rate-limiting barrier properties added by the microcapsules, extending the potential functionality from hours to weeks.
Continuous polysaccharide fibers and nonwovens—based on cellulose, hydroxypropyl cellulose, chitosan, or alginate—containing biopolymeric microcapsules (MC) or mesoporous silica nanoparticles (MSN) are prepared using a wet-spinning or solution blowing technique. The MCs are homogeneously distributed in the fiber matrices whereas the MSNs form discrete micron-sized aggregates as demonstrated using scanning electron-, fluorescence-, and confocal microscopy. By encapsulating the model compound pyrene, it is shown that 95% of the substance remains in the fiber during the formation process as compared to only 7% for the nonencapsulated substance. The material comprising the MC has a strong impact on the release behavior of the encapsulated pyrene as investigated using methanol extraction. MCs based on poly(l-lactic acid) prove to be practically impermeable with no pyrene released in contrast to MCs based on poly(lactic-co-glycolic acid) which allow for diffusion of pyrene through the MC and fiber as visualized using fluorescence microscopy. © 2022 The Authors.
A superporous hydrogel - in which the interconnecting fibres themselves are hydrogels - based on hydroxypropyl cellulose (HPC) has been produced using the nonwoven solution blown technique. The nonwoven fibres were subsequently thermally crosslinked with citric acid as identified by esterbond formation using FT-IR spectroscopy. The gel fraction was approximately 70%. The superporous HPC hydrogel exhibited a very fast water absorption, reaching an equilibrium absorption (80% water content) within 30 seconds. The equilibrium absorption was strongly codependent on both the fibre thickness and the pore size whereas the absorption rate was correlated with the pore size as established using standard linearized regression analysis.