Change search
Refine search result
1 - 30 of 30
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Boström, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Internationell konferens om brandsäkerhet hos fasader2016In: Brandposten, no 54, p. 5-5Article in journal (Other academic)
  • 2.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Boström, Lars
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Chiva, Roman
    Efectis, France.
    Guillaume, Eric
    Efectis, France.
    Colwell, Sarah
    BRE, UK.
    Hofmann, Anja
    BAM, Germany.
    Toth, Peter
    EMI, Hungary.
    EUROPEAN APPROACH TO ASSESS THE FIRE PERFORMANCE OF FAÇADES2019In: Interflam 2019, proceedings / [ed] Stephen Grayson, Interscience Communications, 2019, Vol. 15, p. 213-Conference paper (Refereed)
    Abstract [en]

    Several attempts have been made in the past to develop a European harmonized testing and assessment method for façades before the European commission decided to publish a call for tender on the topic. A project consortium from five countries (Sweden, UK, France, Germany and Hungary) applied to the call for tender and was contracted to develop a European approach to assess the fire performance of façades. 24 sub-contractors and 14 stakeholder entities were part of the project.

    The objective of the European project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European approach agreed by SCC. In addressing this objective, the project team was asked to consider a number of issues which are presented and discussed.

    The initial stages of this project were focused on:

    • establishing a register of the regulatory requirements in all Member States in relation to the fire performance of façade systems, and
    • to identify those Member States who have regulatory requirements for the fire performance façade systems which go beyond the current EN 13501 (reaction to fire and fire resistance) classification systems and to collate the details of these additional requirements. [6]

    After having confirmed the regulatory needs the following steps were discussed:

    • a testing and classification methodology based on BS 8414 - Fire performance of external cladding systems series and DIN 4102-20 - Fire behaviour of building materials and building components - Part 20: Complementary verification for the assessment of the fire behaviour of external wall claddings to address the identified key performance and classification characteristics [4] [5]
    • a verification and validation proposal, in the form of a round robin programme to support the development of the proposed testing and classification methodologies.
    • an alternative test method which was developed on the basis of the comments from stakeholders during the project

    Several hundreds of comments were received during the project and were implemented in the development.

    This paper is a short overview of results the two-year development work, which Final Report published by the European Commission in 2018 [1].

  • 3.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Boström, Lars
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Jansson McNamee, Robert
    Brandskyddslaget, Sweden.
    Fire Safety of Façades2017Report (Other academic)
    Abstract [en]

    Façade fires do not occur often (in comparison to other major structure fires) but in recent years there have been a number of spectacular façade fires in high rise building such as the recent fire in Grenfell Tower, London.Under-ventilated compartment fires may cause flames to spill out of window openings impinging the façade, thus devastating façade fires may start on one floor leap-frogging to adjacent floors. It is therefore necessary to limit or delay fire spread to higher floors. Requirements built on large scale fire testing may decrease the risk of these types of fires provided that the building is constructed according to the specifications provided by the manufacturer. Different countries have different regulations and tests for façades. New materials and façade systems are continuously introduced which might call for an update of these tests and regulations.This report summarizes experimental and modelling efforts in characterizing the fire safety of façades using the Swedish SP Fire 105 and the British BS 8414 methods. Recent experimental results and modelling is presented exploring the variations in the fire exposure, fire load and the fuel used. The fire source and the heat exposure to the façade are characterized by additional temperatures measured by plate thermometers while some other aspects are only treated in the numerical study such as a change in fuel. It is found that the results from the BS 8414 are largely affected by wind and climate since the experimental test was performed outdoors, moreover fire spread on wooden façades is also briefly discussed.In order to obtain a deeper understanding of the test methods and the results CFD (Computational Fluid Dynamics) Modelling in FDS was used. The models were based on measured input parameters including uncertainties and an assessment of the impact of said uncertainties. The models could often reproduce the experimentally found temperatures qualitatively and quantitatively. A detailed discussion on the regulations and the tests that lead to the SP Fire 105 test method is also presented. Summaries of the façade testing methods and conditions in other European countries are presented in the appendices.Finally possible ways forward in updating the façade testing and regulations are discussed.

  • 4.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Boström, Lars
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Jansson McNamee, Robert
    Brandskyddslaget, Sweden.
    Milovanović, Bojan
    University of Zagreb, Croatia.
    Experimental comparisons in façade fire testing considering SP Fire 105 and the BS 8414‐12018In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 42, no 5Article in journal (Refereed)
    Abstract [en]

    A comparison between full‐scale façade fire tests where SP Fire 105 and BS 8414‐1 were used regarding repeatability and the use of modeling to discern changes in the setups is presented. Two test series according to BS 8414‐1 were repeated outside using the same façade systems on 2 different days, whereas for the SP Fire 105 a set of common façade systems in Sweden were tested indoors. In particular, the results show that the wind around the test setup may have a significant impact on the tests and that the heat exposure to the façade surface will depend on the thickness of the test specimen where an increased temperature in front of the façade, and a decreased temperature on the façade 2.1 m above the fire room, is observed experimentally. The heat exposure to the test specimen varies to a more limited extent when an uncontrollable free burning fire source is used (in this study heptane and wood, respectively) and that this variation increases when wind is present.

  • 5.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Boström, Lars
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Jansson McNamee, Robert
    Brandskyddslaget AB, Sweden.
    Milovanović, Bojan
    University of Zagreb, Croatia.
    Modelling of fire exposure in facade fire testing2017In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 42, no 5, p. 475-483Article in journal (Refereed)
    Abstract [en]

    In this paper, a comparative simulation study on 3 large‐scale facade testing methods, namely,the SP Fire 105, BS 8414‐1, and the ISO 13785‐2 methods, is presented. Generally goodcorrespondence between simulations and experimental data has been found, provided thatthermal properties of the facade material and heat release rates are known; however, thecorrespondence deviates in close proximity of the fire source. Furthermore, a statistical ensemblefor evaluating the effects stemming from uncertainty in input data is used. Here, it wasfound using this statistical ensemble that the variability was smaller in the ISO 13785‐2compared to the BS 8414‐1 method. The heat release rates (HRR) used in the simulations wereadopted from measurements except for the ISO method where the information in the standardwas used to approximate the HRR. A quantitative similarity between the HRR in the ISOmethod and the British method was found.

  • 6.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Boström, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Jansson McNamee, Robert
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Milovanović, Bojan
    University of Zagreb, Croatia.
    Uncertainties in façade fire tests - Measurements and modeling2016In: MATEC Web of Conferences, 2016, article id 03002Conference paper (Refereed)
    Abstract [en]

    In this paper a comparison between test and modelling results are performed for two large-scale façade fire testing methods, namely SP Fire 105 and BS 8414-1. In order to be able to compare tests and modelling the uncertainties have to be quantified both in the test and the modelling. Here we present a methodology based on deterministic sampling to quantify uncertainties in the modelling input. We find, in general good agreement between the models and the test results. Moreover, temperatures estimated by plate thermometers is indicated to be less sensitive to small variations in model input and is thus suitable for these kind of comparisons.

  • 7.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Boström, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Jansson, Robert
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Milovanovic, Bojan
    University of Zagreb, Croatia.
    Experimental assessment of repeatability in facade fire testing2016In: Interflam 2016: Conference Proceedings, 2016, p. 653-658Conference paper (Other academic)
  • 8.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Boström, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Jansson, Robert
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Milovanovic, Bojan
    University of Zagreb, Croatia.
    Modeling of fire exposure in facade fire testing2016In: Interflam 2016: Conference Proceedings, 2016, p. 1115-1126Conference paper (Other academic)
  • 9.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Boström, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Jansson, Robert
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research.
    Milovanović, Bojan
    University of Zagreb, Croatia.
    Fire dynamics in Façade fire tests: Measurement, modeling and repeatability2015In: Applications of Structural Fire Engineering, Czech Technical University in Prague , 2015Conference paper (Refereed)
    Abstract [en]

    Presented is a comparison between full-scale façade tests where SP Fire 105 and BS 8414-1 were used regarding repeatability and the use of modelling to discern changes in the set-ups. Results show that the air movements around the test set-up (the wind) may have a significant impact on the tests and that the heat exposure to the façade surface will among other depend on the thickness of the test specimen. Also demonstrated was that good results could be obtained by modelling of the façade fire tests giving us the opportunity to use these methods to determine the effect of a change in the experimental setup.

  • 10.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Jansson, Robert
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Façade Fire Tests – Measurements and Modeling2013In: Proceedings of the 1st International Seminar for Fire Safety of Facades, 2013Conference paper (Refereed)
  • 11.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Jansson, Robert
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Façade fire tests - Measurements and modeling2013In: 1st International Seminar for Fire Safety of Facades, FSF 2013, 2013, , p. 2003Conference paper (Refereed)
  • 12.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Lange, David
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Boström, Lars
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Applying uncertainty quantification in modelling of a steel beam exposed to fire2016In: Structures in Fire: Proceedings of the Ninth International Conference, 2016, p. 925-932Conference paper (Other academic)
    Abstract [en]

    Modelling of structures exposed to fires is prone to be heavily influenced by uncertainties in geometrical parameters, thermal material data as well as uncertainties in the boundary conditions. Assessing the effects and influences in variations of all the uncertain parameters is often cumbersome and traditional methods are impractical thus modelling of the total uncertainty is needed. Uncertainty Quantification with deterministic sampling is one possible way ahead to accommodate and evaluating the effects of uncertainties with as few repeated simulations as possible. In this paper the uncertainties stemming from error in the input data and boundary conditions on one example of a steel beam under four point bending exposed to fire is evaluated.

  • 13.
    Anderson, Johan
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Lange, David
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Lönnermark, Anders
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Modelling in WFDS of a Wildfire Scenario2016In: Book of Abstracts Nordic Fire & Safety Days 2016, 2016, p. 33-33Conference paper (Other academic)
  • 14.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lange, David
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lönnermark, Anders
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Mindykowski, Pierrick
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Modelling in wfds of a wildfire scenario2017In: 15th International Conference and Exhibition on Fire and Materials 2017, Interscience Communications Ltd , 2017, p. 765-776Conference paper (Refereed)
    Abstract [en]

    In this paper a coarse graining process is used to subsequently model large wildland fires, starting from a model of a single tree. The models are created using Wildland Urban Interface Fire dynamics Simulator (WFDS), and it is here found that reasonable fire spread in small forests can be obtained although the results are quite dependent on grid resolution as well as moisture content. In most realistic scenarios the computational volume is rather large yielding massive amounts of data. In using WFDS a rather small grid size is needed to appropriately model the fire spread this will be a severely limiting factor in creating large models.

  • 15.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport.
    Sjöström, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lönnermark, Anders
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Persson, Henry
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Larsson, Ida
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Assessment of Self-Heating in Wood Pellets by FE Modelling2017Conference paper (Refereed)
    Abstract [en]

    The self-heating process in a laboratory scale experiment has been modelled using the Comsol Multiphysics software. In the simulations the gas flow and air movement in the volume and heat diffusion in the bulk were taken into account however only one reaction in the pellets bulk is considered. The input data is found from measurements of the reaction chemistry and the heat transfer properties. It is found that all relevant physics is needed in order to obtain reasonable predictions in particular the heat transfer between the bulk and the gas is important but also condensation and evaporation of moisture.   

  • 16.
    Anderson, Johan
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Sjöström, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Temple, Alastair
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Charlier, Marion
    ArcelorMittal, Sweden.
    Xu, Dai
    University of Edinburgh, UK.
    Welch, Stephen
    University of Edinburgh, UK.
    Rush, David
    University of Edinburgh, UK.
    FDS SIMULATIONS AND MODELLING EFFORTS OF TRAVELLING FIRES IN A LARGE ELONGATED COMPARTMENT2019In: Interflam 2019, proceedings / [ed] Stephen Grayson, Interscience Communications, 2019, Vol. 15, p. 2085-Conference paper (Refereed)
    Abstract [en]

    The present paper investigates a travelling fire scenario in an elongated structure (Length 18 m x width 6 m x height 3 m) with a controlled fire source of six pans filled with diesel (width 4 m x length 0.5 m). The fire spread is controlled manually by initiating fires subsequently in the pools. Fire Dynamics Simulator (FDS) is used to a-priori investigate variations in geometry, material data and fire load whereas simulations using the final design were performed after the test. The input to the model beside fire source and geometry are thermal material data. The FDS simulation were used to determine the appropriate size of the downstands (2 m from the ceiling in the final design) on the side to create a sufficiently one-dimensional fire spread. The post test simulations indicate that although there are a lot of variations not included in the model similar results were obtained as in the test.

  • 17. Bartlett, AI
    et al.
    Lange, David
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Anderson, Johan
    Hadden, RM
    Uncertainty Quantification Applied to a Fire-Exposed Glued-Laminated Timber Beam2016In: 14th International Probabilistic Workshop, Springer , 2016, p. 203-213Chapter in book (Other academic)
    Abstract [en]

    As a natural material, the response of timber structures under normal conditions and to fire is subject to wide variability. Deterministic models therefore struggle to reflect the reality of the response of timber since small variations in input influence the output significantly. However it is relatively straightforward to quantify uncertainties in model inputs in order to determine the uncertainties in the model response by employing uncertainty quantification (UQ) techniques. UQ of structural response to fire traditionally employs Monte Carlo techniques (Eamon and Jensen 2013) which are computationally expensive for a large number of variables. Deterministic Sampling (DS) (Hessling 2013) is a relatively new efficient alternative method for UQ. DS assumes that a continuous probability density function can be replaced by an ensemble of discrete deterministic samples if the two representations have the same statistical moments. DS has been demonstrated applied to, e.g. CFD simulations (Anderson et al. 2016). This paper applies DS techniques to study glued-laminated (glulam) timber in fire. Results are compared with random sampling techniques to show the validity of this method in this application.

  • 18.
    Boström, Lars
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Hofmann-Böllinghaus, Anja
    BAM, Germany.
    Colwell, Sarah
    BRE, UK.
    Chiva, Roman
    Efectis, France.
    Toth, Peter
    EMI, Hungary.
    Moder, Istvan
    EMI, Hungary.
    Sjöström, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lange, David
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Development of a European approach to assess the fire performance of facades2018Report (Refereed)
    Abstract [en]

    The objective of this project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European approach agreed by SCC.

  • 19.
    Brandon, Daniel
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Wind effect on internal and external compartment fire exposure2018Report (Other academic)
    Abstract [en]

    Changes of buildings regulations regarding the allowable height of mass timber structures in North America have been proposed. The proposed changes are to a significant extent based on real scale fire experiments of compartments that have been performed in laboratories in which the influence of wind is negligible. It has, however, been questioned whether the proposed regulations are relevant for realistic scenarios with external wind loads acting on the building during a compartment fire.

    The study discussed in this report involves a review of previous literature, analysis of available test results and single zone modeling to study potential effects of external wind on the internal and external exposure of fires in compartments with exposed CLT.

  • 20.
    Johansson, Nils
    et al.
    Lunds University, Sweden.
    Pelo, Christian
    Ramboll, Sweden.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    McNamee, Robert
    Brandskyddslaget, Sweden.
    CFD-beräkningar vid brandteknisk dimensionering - En Round Robin studie2019Report (Other academic)
    Abstract [sv]

    I studien utförde nio deltagande aktörer samma beräkningsuppgifter utan att veta vad de andra kommit fram till. Resultatsammanställningen visar en relativt stor spridning som till största delen kan förklaras med att deltagarna gör olika ingenjörsmässiga val. Läs den och fundera på vilka ingenjörsmässiga val du gör i vardagen.

  • 21.
    Lange, David
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Anderson, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Albrektsson, Joakim
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Fire Research, Brandmotstånd.
    Modelling in fire resistance and fire dynamics2012In: Brandposten, no 47, p. 26-Article in journal (Other (popular science, discussion, etc.))
  • 22.
    Larsson, Fredrik
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Electronics.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Andersson, Petra
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Mellander, Bengt-Erik
    Chalmers University of Technology, Sweden.
    Safer battery systems in electrified vehicles – an electrified bus perspective2016In: Eurotransport, ISSN 1478–8217, Vol. 14, no 3, p. 50-53Article in journal (Other academic)
    Abstract [en]

    Lithium-ion (Li-ion) batteries offer great energy and power densities accompanied with long battery life time. However, if a mechanical fault occurs or the batteries over-heat, the flammable electrolyte of the Li-ion battery may pose a  risk. For Eurotransport, colleagues  from  the SP Technical Research Institute of Sweden (SP) and Chalmers University of Technology explore further, identifying the risks involved with electric buses.

  • 23.
    Larsson, Fredrik
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut. Chalmers University of Technology, Sweden.
    Anderson, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Andersson, Petra
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Mellander, Bengt-Erik
    Chalmers University of Technology, Sweden.
    Thermal Modelling of Cell-to-Cell Fire Propagation and Cascading Thermal Runaway Failure Effects for Lithium-Ion Battery Cells and Modules Using Fire Walls2016In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 163, no 14, p. A2854-A2865Article in journal (Refereed)
    Abstract [en]

    A model is presented for predicting the cell-to-cell propagation of a thermal runaway/fire in a lithium-ion battery cell to neighboring cells by simulating the temperature development in neighboring cells. The modelling work comprises of two major steps; setting up a model of the cells including the thermal properties of the cells, and then validating the model through experiments where the boundary conditions in the validation test must be determined carefully. The model is developed to allow a fast evaluation of several different preventive means of thermal insulation, it is not modelling the pack and cells to a great detail. Still the experimental validation indicates that the model is good enough to fulfil its purpose of the model. A feasibility study using the model is conducted assessing two different types of fire walls between battery modules of 10 cells. The results show that there is a substantial risk for a cascading of thermal events in a battery pack, although cooling systems and fire walls may mitigate these risks

  • 24.
    Li, Ying Zhen
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Huang, Chen
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Svensson, Robert
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Ingason, Haukur
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Husted, Bjarne
    Lund University, Sweden.
    Runefors, Marcus
    Lund University, Sweden.
    Wahlqvist, Jonatan
    Lund University, Sweden.
    Verification, validation and evaluation of FireFOAM as a tool for performance design2017Report (Other academic)
    Abstract [en]

    The open source CFD code FireFOAM has been verified and validated against analytical solution and real fire tests. The verification showed that FireFOAM solves the three modes of heat transfer appropriately. The validation against real fire tests yielded reasonable results. FireFOAM has not been validated for a large set of real fires, which is the case for FDS. Therefore, it is the responsibility of the user to perform the validation, before using the code. One of the advantages of FireFOAM compared to the Fire Dynamic Simulator is that FireFOAM can use unstructured grid. FireFOAM is parallelised and scales reasonable well, but is in general considerably slower in computation speed than the Fire Dynamic Simulator. Further, the software is poorly documented and has a steep learning curve. At present it is more a tool for researchers than for fire consultants.

  • 25.
    Nilsson, Markus
    et al.
    Brandskyddslaget AB, Sweden.
    Husted, Bjarne
    Lund University, Sweden.
    Mossberg, Axel
    Brandskyddslaget AB, Sweden.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Jansson McNamee, Robert
    Brandskyddslaget AB, Sweden.
    A numerical comparison of protective measures againstexternal fire spread2018In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 42, no 5, p. 493-507Article in journal (Refereed)
    Abstract [en]

    The impact of different passive protective measures against external vertical firespread was investigated using the numerical tool Fire Dynamics Simulator (FDS).The numerical study was divided into a validation study and a comparative analysis.The validation study was performed to evaluate FDS as a calculation tool for modellingexternal vertical fire spread and was conducted using experimental results from alarge‐scale fire test done on a SP FIRE 105 test rig at SP, Sweden. It was concludedthat FDS 6.2.0 could reproduce the experimental results with a reasonable level ofdetail. In the comparative analysis, the impact on the external fire from a smallerapartment was studied in FDS with different configurations of horizontal projectionsand spandrels in the building exterior. Also, the effects of an upper and lower facadeset‐back configuration were studied. The results show that facade solutions based ona horizontal projection or an upper facade set‐back configuration result in comparableor better protection compared with a defined spandrel height. The results also showthat a spandrel height of at least 1.2 m can be replaced by a 60‐cm‐deep horizontalprojection, given that the balcony is wider than the underlying opening.

  • 26.
    Nilsson, Markus
    et al.
    Brandskyddslaget AB, Sweden.
    Mossberg, Axel
    Brandskyddslaget AB, Sweden.
    Husted, Bjarne
    Lund University, Sweden.
    Anderson, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Compare the impact of horizontal projections and spandrels on external fire spread using FDS2016In: Interflam 2016: Conference Proceedings, 2016Conference paper (Other academic)
  • 27.
    Olsson, Kim
    et al.
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Lange, David
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Uncertainty propagation in FE modelling of a fire resistance test using fractional factorial design based model reduction and deterministic sampling2017In: Fire safety journal, ISSN 0379-7112, E-ISSN 1873-7226Article in journal (Refereed)
    Abstract [en]

    In this paper, fractional factorial design (FFD) and deterministic sampling (DS) are applied to a finite element (FE) model of a fire resistance test of a loaded steel beam, to investigate how uncertainties are propagated through the FE model. The sought quantity was the time when the deflection of the beam exceeded 225. mm. The FFD method was used as a model reduction technique which reduced the number of uncertain parameters from 5 to 3. The DS method was compared to a reference Monte Carlo (MC) method of 1000 simulations from all 5 uncertain parameters, which was the minimum number of simulations in order for the statistical moments to converge. The combined FFD and DS method successfully computed the propagation of the mean and standard deviation in the model, compared to the MC method. Given the uncertainties in the FE model, the fractional factorial design reduced the number of simulations required in the DS method by 82%. The combined method of FFD and DS reduced the number of required simulations by 96% compared to the MC method. The DS method did not capture the tails of the probability distribution and is therefore not a suitable candidate for probabilistic evaluation of the time of failure at the edges of the domain of possible failure times. Future research could very well be on improving the tails in DS. However, the DS method provides a conservative 95% coverage interval of 6. min for the time to failure of the steel beam.

  • 28.
    Runefors, Marcus
    et al.
    Lund University, Sweden.
    Anderson, Johan
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Wahlqvist, Jonathan
    Lund University, Sweden.
    Huang, Chen
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Husted, Bjarne
    Lund University, Sweden.
    A comparison of radiative transfer models in firefoam and FDS2016In: Interflam 2016: Conference Proceedings, 2016, p. 59-69Conference paper (Other academic)
  • 29.
    Wickström, Ulf
    et al.
    Luleå University of Technology, Sweden.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Sjöström, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    Measuring incident heat flux and adiabatic surface temperature with plate thermometers in ambient and high temperatures2018In: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 43, no 1, p. 51-56, article id 2667Article in journal (Refereed)
    Abstract [en]

    A new more insulated and faster responding plate thermometer (PT) is introduced,which has been developed for measurements particularly in air at ambient temperature.It is a cheaper and more practical alternative to water‐cooled heat flux meters(HFMs). The theory and use of PTs measuring incident radiation heat flux and adiabaticsurface temperature are presented. Comparisons of measurements with PTsand HFMs are made. Finally, it is concluded that incident radiation in ambient aircan be measured with HFMs as well as with the new insulated type of PT. In hot gasesand flames, however, only PTs can be recommended. At elevated gas temperatures,convection makes measurements with HFMs difficult to interpret and use for calculations.However, they can be used in standard or well‐defined configurations forcomparisons.

  • 30.
    Xu, Dai
    et al.
    University of Edinburgh, UK.
    Welch, Stephen
    University of Edinburgh, UK.
    Rush, David
    University of Edinburgh, UK.
    Charlier, Marion
    ArcelorMittal, Sweden.
    Anderson, Johan
    RISE - Research Institutes of Sweden, Safety and Transport, Safety.
    CHARACTERISING NATURAL FIRES IN LARGE COMPARTMENTS – REVISITING AN EARLY TRAVELLING FIRE TEST (BST/FRS 1993) WITH CFD2019In: Interflam 2019, proceedings / [ed] Stephen Grayson, Interscience Communications, 2019, Vol. 15, p. 2111-Conference paper (Refereed)
    Abstract [en]

    This paper presents a careful assessment of fire conditions in a long enclosure, open only at one end, which contained a regularly spaced timber crib fire load and is dominated by under-ventilated combustion. Though the geometrical arrangement, with fully enclosed side walls, differs from many more recent “travelling fire” tests, the essential fire behaviour shows a very clear progression of the main burning zone, driven by a combination of fire spread, ventilation and fuel burn out. By contrast many other travelling fire tests have been designed to be fuel-controlled, in much more open structures. Moreover, due to the enclosed nature of the test, it was observed to result in very high temperatures in the protected and unprotected steel beam members, especially during the phase when the fire travelled back from the opening to the ignition location at the rear of the compartment. The investigated test in this paper is Test number 2, which is one of nine tests carried out at the BRE Cardington laboratory in the UK, led by British Steel Technical (BST) and hosted by the Fire Research Station (FRS).CFD modelling, with NIST’s Fire Dynamics Simulator (FDS), is invoked to assist in exploration and interpretation of the test results, and to evaluate model capabilities for this complex fire scenario. For simplicity, instead of modelling the complex pyrolysis and combustion of timber on a stick-by-stick basis, the entire wood cribs are represented in the FDS model as single objects. Thus ignition and burning are represented in a simplified manner at the scale of the individual crib faces, with idealised mass loss curves derived from measurements in selected rows. Though tied to empirical mass loss, the model is stretched in representing heavily under-ventilated conditions occurring in certain domains. Despite these simplifications and challenges the model does prove capable of representing the qualitative behaviours to a satisfactory level. In particular, with appropriate parameter choice for reaction-to-fire properties, the FDS models are able to represent the fire spread rates for the two distinct stages of the fire: the fire travelling from rear to the front of the compartment in search of oxygen; and the fire travelling back from the opening to the rear as fuel is consumed. The results suggest the potential value of such simplified representations of cribs in FDS for travelling fire scenarios.In the calibrated model, the magnitude of the thermocouple (TC) temperatures at three locations (ignition location, centre location, and opening location) shows generally good agreement between the FDS model and the test at the stage when the fire travels to the opening. However, significantly higher discrepancy appears at the stage when the fire travels back. In addition to the highly simplified representation of crib burning, another likely reason for the latter may be the malfunction of the mass loss measurement in several wood cribs at this stage, which led to significant uncertainties in prescribed burning rates. Another large source of uncertainty relates to residual heat in compartment boundaries and fuel embers, the latter not being easy to represent in CFD models. These results suggest avenues to explore in future model development.

1 - 30 of 30
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8