Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fernberg, Patrik
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Gong, Guan
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Mannberg, P.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Processing and properties of new polyimide composites with high temperature ability2014Conference paper (Refereed)
    Abstract [en]

    The communication present results from work on development and evaluation of new polymeric carbon fiber composites with extreme temperature performance: Tg up to 360°C is targeted. The anticipated use of such composites is found in aeroengine-applications. In the work we are exploring a new and tailored phenyl ethynyl terminated imide (PETI) formulation, specially developed for the program. The formulation utilizes crosslinkers of the Nexamide" type (from Nexam Chemical AB, Sweden). The resins are initially evaluated from a processing and property perspective. Both DSC-measurements and rheology characterization are utilized in the development. Suitable RTM-processing schemes are investigated from a viscosity point of view. The schemes are used in the composite sample manufacturing. Besides a processing perspective the study also present the first results on physical behavior of the polymers and their composites.

  • 2.
    Fernberg, Patrik
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Gong, Guan
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Mannberg, Peter
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Tsampas, Spyros
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Development of novel high Tg polyimide-based composites. Part I: RTM processing properties2018In: Journal of composite materials, ISSN 0021-9983, E-ISSN 1530-793X, Vol. 52, no 2, p. 253-260Article in journal (Refereed)
    Abstract [en]

    In this study, an assessment of the composite processing-related properties of a newly developed 6-FDA-based phenylethynyl-terminated polyimide (available under the tradename NEXIMID®MHT-R) is presented. Processing schemes, used for preparing high quality carbon fibre-reinforced composites by the use of conventional resin transfer moulding are developed and presented. The influences of manufacturing parameters on glass transition temperature of the composites are presented. The results confirm that composites with exceptionally high Tg, in the range between 350 and 460℃ can be achieved. A manufacturing scheme that yields in composites with Tg of 370℃ is presented and proposed as a good candidate to serve as baseline for further studies.

  • 3.
    Gong, Guan
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Literature study of graphene modified polymeric composites2018Report (Other academic)
    Abstract [en]

    This study presents a survey of literatures including recent work in relevant projects, ongraphene modified polymeric composites with a particular focus on fibre reinforcedpolymeric composites.A variety of routes that are used and can potentially be used to integrate graphene intocomposites are reviewed, including dispersing graphene into a polymer matrix, dopinggraphene onto fibre reinforcement, graphene modified prepreg and the use of graphenebuckypaper. The effect of processing parameters, such as dispersion and doping methods,temperature, pressure, etc., along with modification of graphene, on the structure andmechanical, electrical, thermal, barrier, rheological and crystalline properties of the resultantcomposites are also reviewed.The most prominent influencing factors are the intrinsic properties of graphene includingaspect ratio of nanoplatelets and surface functionalization, dispersion and exfoliation as wellas orientation and alignment of graphene, and interactions of graphene-polymer andgraphene-fibre reinforcement. The selection of processing techniques and tailoring ofinfluencing factors depend on the required properties. For instance, deposited graphene ontofibres for reinforcement can be more efficient than dispersed graphene into the polymer toimprove the interfacial and interlaminar properties. Well-dispersed and randomly orientedgraphene can be more beneficial than well-dispersed and aligned graphene for higherelectrical conductivity while less favoured for higher mechanical properties. Potentialapplications of graphene modified polymeric composites addressing industrial and societalchallenges are also discussed.

  • 4.
    Gong, Guan
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Nyström, Birgitha
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Joffe, Roberts
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Development of polyethylene/nanoclay masterbatch for use in wood-plastic composites2013Conference paper (Refereed)
    Abstract [en]

    In this work, organoclay reinforced high density polyethylene (HDPE) nanocomposites were prepared at laboratory scale using a batch mixer. Processing conditions, maleic anhydride modified polyethylene (MAPE) type and MAPE/clay weight ratio were optimised. The microstructure of the resultant nanocomposites was analysed by X-ray diffraction and melt rheology tests, and flexural properties and thermal stability were evaluated. Three types of MAPEs with different melt flow indices (MFI) and maleic anhydride contents all improved the interaction between HDPE and clay and promoted clay dispersion. Nanocomposites where the MAPE with MFI most similar to HDPE was used showed the best exfoliation of clay and the strongest HDPE/clay interface. Mechanical properties were slightly improved, while thermal stability was distinctly enhanced in these HDPE nanocomposites compared with neat HDPE and HDPE nanocomposite without MAPE. The prepared HDPE nanocomposites show the potential to improve the thermal stability of wood-plastic composites for structural applications. © 2013 Institute of Materials, Minerals and Mining.

  • 5.
    Gong, Guan
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Nyström, Birgitha
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Joffe, Roberts
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Enhanced thermal stability and flame retarding properties of recycled polyethylene based wood composites via addition of polyethylene/nanoclay masterbatch2013In: Plastics, rubber and composites, ISSN 1465-8011, E-ISSN 1743-2898, Vol. 42, no 6, p. 244-255Article in journal (Refereed)
    Abstract [en]

    Barrier and mechanical properties of wood powder composites based on recycled polyethylene (RPE) were modified using a commercial nanoclay masterbatch. X-ray diffraction, dynamic rheology and thermogravimetric analysis measurements showed that nanoclay from the selected masterbatch was well dispersed and formed a percolation network in both virgin and RPEs. The resulting nanocomposites promoted the thermal stability of matrix significantly. Modification efficiency of nanoclay, however, was evidently influenced by the type of matrix, where the strongest effect was achieved in a low viscosity virgin high density PE. The masterbatch was incorporated into an industrial formula designed extrusion quality RPE/wood flour composite. Processing procedures, mainly compounding cycles, and material composition, mainly clay content and type of coupling agent, were optimised. Two extrusion cycles led to higher uniformity of resulting composites than one cycle. Addition of a coupling agent, which has medium viscosity and plenty functional groups, led to enhanced tensile strength. The twice compounded composites were well stiffened and strengthened via combination of 6 wt-% clay and medium viscosity coupling agent. All composites without the addition of nanoclay burned faster after ignition and dripped much earlier and more compared to the composites containing nanoclay even with as small amount as 3 wt-% and being compounded once. The material with 6 wt-% clay showed the best sample integrity and burned slowest of all the tested composites. Furthermore, no dripping during combustion was seen for this material. This study shows that the incorporation of nanoclay using the selected masterbatch can effectively improve the flame retarding properties of RPE based wood composites. © Institute of Materials, Minerals and Mining 2013.

  • 6.
    Gong, Guan
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Nyström, Birgitha
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Sandlund, Erik
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Eklund, Daniel
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Noel, Maxime
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Westerlund, Robert
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Stenberg, Sofia
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Pupure, Liva
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Pupurs, Andrejs
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Joffe, Roberts
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Development of electrophoretic deposition prototype for continuous production of carbon nanotube-modified carbon fiber fabrics used in high-performance multifunctional composites2018In: Fibers, ISSN 2079-6439, Vol. 6, no 4, article id 71Article in journal (Refereed)
    Abstract [en]

    An electrophoretic deposition (EPD) prototype was developed aiming at the continuous production of carbon nanotube (CNT) deposited carbon fiber fabric. Such multi-scale reinforcement was used to manufacture carbon fiber-reinforced polymer (CFRP) composites. The overall objective was to improve the mechanical performance and functionalities of CFRP composites. In the current study, the design concept and practical limit of the continuous EPD prototype, as well as the flexural strength and interlaminar shear strength, were the focus. Initial mechanical tests showed that the flexural stiffness and strength of composites with the developed reinforcement were significantly reduced with respect to the composites with pristine reinforcement. However, optical microscopy study revealed that geometrical imperfections, such as waviness and misalignment, had been introduced into the reinforcement fibers and/or bundles when being pulled through the EPD bath, collected on a roll, and dried. These defects are likely to partly or completely shadow any enhancement of the mechanical properties due to the CNT deposit. In order to eliminate the effect of the discovered defects, the pristine reinforcement was subjected to the same EPD treatment, but without the addition of CNT in the EPD bath. When compared with such water-treated reinforcement, the CNT-deposited reinforcement clearly showed a positive effect on the flexural properties and interlaminar shear strength of the composites. It was also discovered that CNTs agglomerate with time under the electric field due to the change of ionic density, which is possibly due to the electrolysis of water (for carboxylated CNT aqueous suspension without surfactant) or the deposition of ionic surfactant along with CNT deposition (for non-functionalized CNT aqueous suspension with surfactant). Currently, this sets time limits for the continuous deposition.

  • 7.
    Gong, Guan
    et al.
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Nyström, Birgitha
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Sandlund, Erik
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Eklund, Danierl
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Noel, Maxime
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Westerlund, Robert
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP.
    Joffe, Roberts
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Pupure, Liva
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    Pupurs, Andrejs
    RISE - Research Institutes of Sweden, Materials and Production, SICOMP. Luleå University of Technology, Sweden.
    SCALING-UP PRODUCTION OF CNT-COATEDFIBRE REINFORCEMENT USING CONTINUOUS EPDFOR HIGH-PERFORMANCE ANDMULTIFUNCTIONAL COMPOSITES2018Conference paper (Refereed)
    Abstract [en]

    Itis important within the composite community to improve out-of-plane performance ofcomposites dominated by polymer matrix and properties of matrix-rich regions formed in the gapsbetween the interlaced fibre bundles. These properties are difficult to modify with traditional fibrereinforcement. Various nanoscale materials have been explored for such purpose, among which carbonnanotube (CNT) has been suggested as an ideal candidate because of its outstanding mechanical,electrical and thermal properties (1). Electrophoretic deposition (EPD) is considered as a cost-effectivemethod to deposit CNTs onto substrates with mild working conditions, requiring relatively simpleequipment and being amenable to scaling up (2,3). Due to the shortcoming of existing laboratory setupwhich corresponds to a non-continuous process, EPD has not been used at even a pilot plant scale fornano-coated fibre reinforcement. The current work presents the development of a prototype andmethod for continuous EPD process. Geometric defect of fibre reinforcement introduced during thedeposition, which can shadow the reinforcing effect of CNT deposit, was discovered. Enhancement ofcomposite properties by the CNT deposit was hence shown.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7