Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hey Tow, Kenny
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Alomari, Sandy
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Claesson, Åsa
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Neves, Tiago
    Instituto Pedro Nunes, Portugal.
    Nanocomposite-coated optical fibres for improved distributed sensing performance in harsh environment2023In: Proceedings - 28th International Conference on Optical Fiber Sensors, OFS 2023, Optical Society of America , 2023Conference paper (Refereed)
    Abstract [en]

    Draw tower fabrication of a novel optical fibre with nanocomposite polymer coating is reported. Preliminary results show it is more robust to high-temperature ageing, and moisture-induced strain than standard polymer fibres when used for distributed sensing. 

  • 2.
    Hey Tow, Kenny
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Alomari, Sandy
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Pereira, Joao
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Neves, Tiago
    Instituto Pedro Nunes, Portugal.
    Claesson, Asa
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Graphene-material based nanocomposite-coated optical fibres: a multi-functional optical fibre for improved distributed sensing performance in harsh environment2024In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213Article in journal (Refereed)
    Abstract [en]

    The optical fibre coating is essential to ensure high performance and reliability of the optical fibre. Out of all polymer-coated fibres, polyimide coatings provide the highest temperature rating, typically rated for use in optical fibre sensing applications at 300˚C (in air), with short excursion to 350˚C. In this communication, we assess whether the inclusion of graphene-based nanoparticles, such as graphene and graphene oxide, in a polyimide coating can enhance the durability of optical fibres at high temperatures. Draw tower fabrication of optical fibres with nanocomposite polymer coating is described. Tensile strength tests, performed on aged nanocomposite-coated optical fibres, are used as an indication of their performance at harsh conditions. The results are validated and quantified by distributed temperature and humidity sensing tests performed using these fibres. The results show that this novel class of fibre is more robust to high-temperature ageing and moisture-induced strain than standard polyimide-coated fibres, when used for distributed sensing. The electrical conductivity of the nanocomposite coating is also used in a multi-sensing approach, together with distributed optical fibre sensing, to measure temperature in a reliable way using the same optical fibre. 

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf