Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andersson, Kristina
    et al.
    RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.
    Hellström, Anna-Karin
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Lundahl, Jenny
    RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.
    Challenges and opportunities with the EU Taxonomy Regulation– with focus on chemical safety and usage in complex products2023Rapport (Annet vitenskapelig)
    Abstract [en]

    The use of Policy Lab processes has been growing in Sweden and other countries to accelerate the adaptation of regulations to emerging technologies. Policy Lab facilitates active collaboration between relevant authorities, companies, and stakeholders through interactive and iterative methods based on Design Thinking principles. This approach bridges the gap between the legislative domain responsible for developing regulatory frameworks and the innovative companies that create solutions for emerging markets using new technologies and opportunities. In our study, we applied Policy Lab processes to the EU Taxonomy Regulation to identify challenges and opportunities related to chemical safety and usage for manufacturers of complex products. The EU Taxonomy Regulation, along with its delegated acts, represent a serious effort to establish standardized sustainability reporting within EU. However, it is still in its early stages and lacks maturity. Moreover, certain ambiguities within the regulation currently prevent a comprehensive comparison of companies due to the development of other legislations. Addressing these gaps depends on the future development of, for example, REACH. Our conclusion is that the EU Taxonomy Regulation is part of a larger “movement” that reflects the policymakers’ intentions. This intention also includes increased data sharing at a significantly different level compared to current practices. In the long run, the shift will enable authorities to access the data and develop new legislations. Our specific focus was on the objective of pollution prevention and control regarding the use and presence of hazardous substances listed in Appendix C of the EU Taxonomy Regulation. According to Appendix C, activities must not lead to the manufacture, placing on the market or use of listed substances, whether on their own, in mixture or in articles. Regarding listed substances, reference is made to existing EU legislation that regulates hazardous substances within the EU. The most challenging aspect in Appendix C is point (g), which aims to identify substances, whether alone, in mixtures, or in articles, that meet the criteria set out in Article 57 of REACH but are not yet included in the Candidate list. Our workshops, interviews, and literature review confirmed that the main challenge in meeting the criteria of Appendix C, specifically point (g) is the need to enhance transparency and traceability throughout supply chains. Overcoming these challenges requires addressing barriers, such as the lack of a harmonized regulatory framework across the value chain, the need for faster identification and restriction of hazardous substances, and the reinforcement of stronger enforcement measures. The enabling of full declaration of the hazardous properties and functions of the substances, while considering the balance between information disclosure and protecting trade secrets, would reduce the need for extensive tracking of substance of very high concern along the value chain. To improve communication along the value chain and identify data gaps while protecting trade secrets, workshop participants have proposed the use of a user-friendly interface based on traffic light scenario. This interface would serve as a filter mechanism, allowing product manufacturers to establish specific criteria for material suppliers to respond to. The objective is to enhance communication, establish criteria, and effectively identify data gaps. While the SCIP database ensures accessibility of information on articles containing substances from the Candidate List above 0.1 w/w%, it is limited to hazardous substances on that list. This means that hazardous substances not listed in the Candidate List may not be covered by the database. The EU Commission has proposed the implementation of a digital product passport to enhance information sharing about products and their supply chain, including substances of concern. Our study is conducted under the Mistra SafeChem program, where screening tools for hazard and exposure assessment of substances are currently being developed. These tools aim to provide screening data for direct decision-making based on the Defined Approach (DA). These screening tools have the potential to contribute to filling data gaps during the early design phases of complex products, particularly when screening for multiple material alternatives.

    Fulltekst (pdf)
    fulltext
  • 2.
    Hellström, Anna-Karin
    et al.
    Chalmers University of Technology, Sweden.
    de la Motte, Hanna
    RISE - Research Institutes of Sweden (2017-2019), Bioekonomi, Bioraffinaderi och energi.
    Syrén, Marie
    RISE - Research Institutes of Sweden (2017-2019), Biovetenskap och material, Kemi och material.
    Nordstierna, Lars
    Chalmers University of Technology, Sweden.
    Bordes, Romain
    Chalmers University of Technology, Sweden.
    Enabling Textile Recycling: On/Off Dyeing2016Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Develop a novel family of environmental friendly dispersant for textile coloring embedded an on/off function for closed loop recycling.

  • 3.
    Ruiz-Caldas, Maria-Ximena
    et al.
    Stockholm University, Sweden.
    Apostolopoulou-Kalkavoura, Varvara
    Stockholm University, Sweden.
    Hellström, Anna-Karin
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Hildenbrand, Jutta
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Larsson, Mikael
    RISE Research Institutes of Sweden, Material och produktion, Metodik för produktframtagning.
    Jaworski, Aleksander
    Stockholm University, Sweden.
    Samec, Joseph
    Stockholm University, Sweden.
    Lahtinen, Panu
    VTT, Finland.
    Tammelin, Tekla
    VTT, Finland.
    Mathew, Aji
    Stockholm University, Sweden.
    Citrated cellulose nanocrystals from post-consumer cotton textiles2023Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 11, nr 13, s. 6854-6868Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We propose a new method for the extraction of cellulose nanocrystals (CNCs) from post-consumer cotton textiles through surface functionalization followed by mechanical treatment. Cotton-based textiles were esterified using an 85 wt% solution of citric acid at 100 °C, then further fibrillated in a microfluidizer. The final product, citrated cellulose nanocrystals (CitCNCs), was a dispersion of needle-like nanoparticles with high crystallinity. Up to 78 wt% of the cotton fabric was converted to CitCNCs that exhibited higher yields and a higher surface group content than CNCs extracted through H2SO4 hydrolysis, although CitCNCs showed a broader size distribution and decreased thermal stability. Experimental data supported by DFT calculations showed that the carboxyl groups on the CitCNC surface are bonded to cellulose by mono or diester linkages. An early-stage life cycle assessment (LCA) was performed to evaluate the environmental impact of using discarded textiles as a source of cellulose and analyze the environmental performance of the production of CitCNCs. Our work showed a significant reduction in the environmental burden of CNC extraction using post-consumer cotton instead of wood pulp, making clothing a good feedstock. The environmental impact of CitCNC production was mainly dominated by citric acid. As a proof of concept, around 58 wt% of the citric acid was recovered through evaporation and subsequent crystallization, which could reduce climate impact by 40%. With this work, we introduce a catalyst-free route to valorize textiles with the extraction of CitCNCs and how conducting LCA in laboratory-scale processes might guide future development and optimization. 

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0